
Supplementary Note
Universal programming offers a powerful
approach to statistical phylogenetics
Fredrik Ronquist1†∗, Jan Kudlicka2†, Viktor Senderov1†, Johannes Borgström2, Nicolas Lartillot3,
Daniel Lundén4, Lawrence Murray5, Thomas B. Schön2, David Broman4

1Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
2Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
3Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, FR-69622 Villeurbanne Cedex, France
4Department of Computer Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
5Uber AI, San Francisco CA 94105, United States

1 Probabilistic programming: an introduction

In this section, we give a brief introduction to (universal) probabilistic programming languages (PPLs), focusing on the key
constructs that are available in most PPLs. First, we give a short overview of different PPLs, followed by an introduction to three
essential concepts in probabilistic programming: (i) sampling, (ii) conditioning, and (iii) inference. These concepts are illustrated
here in the WebPPL languagea, which is based on a functional subsetb of the JavaScript language.

1.1 Overview
A central objective of probabilistic programming is to separate the model from the inference algorithm, such that a user can
construct and use a probabilistic model without the need to implement the inference algorithm explicitly. Instead, it is the task of
the runtime system of the PPL to automatically perform the inference, potentially based on some method preferences specified
by the user.

Programming and modeling languages that separate the model specification from the inference algorithm have been around
for several decades. One of the first of these languages is BUGS (Bayesian inference Using Gibbs Sampling)1. BUGS allows
users to describe probabilistic graphical models2—in particular Bayesian networks—in a declarative way. The model parameters
of interest are then estimated by automatically applying Bayesian inference using Gibbs sampling (and some other methods).
More recent languages that separate modeling and inference of graphical models include Infer.NET3.

Although the above-mentioned languages and environments have shown great success in their application areas, they have
certain model restrictions. In particular, they are limited to models where the dependencies between random variables can be
expressed as a Bayesian network, that is, a finite directed acyclic graph, potentially with if-then-else conditions over variables. In
some domains, this is not sufficient to describe the models of interest. Rather recently, the concept of probabilistic programming
languages4 has gained significant attention as a promising solution, in particular within the machine learning and programming
language communities. The key idea of this new paradigm is to extend Turing-complete programming languages with probabilistic
operations that include, for example, the drawing of (random) samples from a given probability distribution, the conditioning of
random variables on observed outcomes, and the marginalization of random variables5,6.

Such languages are sometimes referred to as universal probabilistic programming languages to clearly differentiate them from
languages based on Bayesian networks, which have sometimes in recent years also been included in the probabilistic programming
family. Here, we will use the terms “probabilistic programming” and “probabilistic programming language (PPL)” exclusively
for universal languages.

Turing-completeness is an important concept in computer science, describing how expressive a programming language is.
The famous Church-Turing thesis conjectures that any function, whose value can be computed by an algorithm, can be computed
by a Turing-complete programming language. For instance, PPLs make it possible to use recursion (or loops) dependent on a
stochastic expression when defining probabilistic models. This means that the graphical network describing the model is dynamic
and can change during inference due to random sampling and observed data. In a PPL, the probabilistic model is a program,
where the inference algorithm is not part of that program (the model). Hence, an alternative and potentially more intuitive name
for a probabilistic program may be a programmatic model: a model that is implemented as a program.

One of the earliest PPLs is Church7, which extends a functional subset of the Scheme programming language. Other
PPLs (both universal and non-universal) include Figaro8 (a PPL embedded in Scala), WebPPL9 (a recent PPL embedded into
JavaScript), Anglican10 (a general-purpose PPL embedded into Clojure that runs on the Java virtual machine), Venture11 (a
PPL with syntax similar to JavaScript), Edward12 (a Python library for probabilistic modelling), Pyro13 (a PPL built on top of

∗E-mail: fredrik.ronquist@nrm.se
†F.R., J.K., and V.S. contributed equally to this work.
ahttp://webppl.org
bFunctional programming (FP) is a programming paradigm, in which code is structured in units called functions that have no side effects; i.e. they only operate

on a given input and produce an output but do not manipulate external objects.

1

0.
00

37
0.
05

3
0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95 1.
0

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Pr
ob

ab
ili
ty

A

0.
02

5
0.
07

3
0.
12

0.
17

0.
22

0.
27

0.
32

0.
37

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
80

0.
85

0.
90

0.
95 1.
0

x

0
0.01
0.02

0.03
0.04
0.05
0.06

0.07
0.08
0.09

Pr
ob

ab
ili
ty

B

-6 -4 -2 0 2 4 6
State

0.0

0.050

0.10

0.15

0.20

0.25

D
en
si
ty

C

1 2 3 4 5 6 7 8

State

0.0
0.050
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Fr
eq
ue
nc
y

D

Fig. 1 A Prior distribution of the bias for the coin flip example. B Posterior distribution of the bias after observing heads once. C Mixture model
of two Gaussian models mixed using stochastic branching. D Resulting geometric distribution with p = 0.6. All plots are generated using the
WebPPL environment.

PyTorch), Birch14 (a PPL that compiles into C++), and Stan15 (a platform for statistical modelling and computation). Note that
this list is far from complete, and there exist many more experimental PPLs.

In this paper, WebPPL and Birch have been used for the reason of simplicity and efficiency, respectively. Some of the authors
of this paper are currently developing a new domain-specific probabilistic programming language on top of theMiking16 platform.
This language, called TreePPL c, is designed specifically for the domain of statistical phylogenetics.

In the rest of this section, we describe the key concepts of probabilistic programming. The examples are given in WebPPL,
but could easily be translated into any of the other universal PPLs. The WebPPL code can be run in a web browser through
the WebPPL project web page d. For a more comprehensive introduction to probabilistic programming, see for example the
introductory text by van de Meent et al.17.

1.2 Sampling
The first key construct in probabilistic programs is sample, meaning that a value is drawn from a given probability distribution.
Consider the following WebPPL code:
sample(Bernoulli({p: 0.5}))

The program models a simple coin flip scenario, where we sample from the Bernoulli distribution with probability 0.5, that is, a
fair coin. When executed, the program returns either true or false, with probabilities corresponding to the sampled distribution.

Suppose we instead introduce another random variable x that models the probability of getting heads on the toss of the coin.
Mathematically, such a model can be defined as follows:

x ∼ Beta(α, β)
y ∼ Bernoulli(x)

where the beta distribution is used as a prior probability distribution for the value of x. The same model can be written as a PPL
program (assuming we set α = β = 2)

var x = sample(Beta({a: 2, b: 2}))
var y = sample(Bernoulli({p: x}))

Note that the sample construct is conceptually used to denote random variables, in this case the two variables x and y. If we
run the program many times and plot the values of x, we get an approximation of the probability density function (PDF) for x in
our mathematical model, that is, an approximation of the Beta(2, 2) distribution. Because the expected value of x is 0.5, y in the
program still models an unbiased coin.

1.3 Conditioning and observations
Probabilistic programs are based on Bayesian statistics, and typically are intended to compute the posterior distribution, given a
prior distribution and some observations. In the coin flip example, suppose we observe heads (encoded as true) after flipping
the coin once. We want to infer p(x |y), the posterior distribution of x, conditioned on the new observation y = true. As in the
previous example, we assume that the prior distribution of x is Beta(2, 2). This model can be defined as follows.
var coinFlip = function() {
var x = sample(Beta({a: 2, b: 2}))
observe(Bernoulli({p: x}), true)
return x

}

chttps://treeppl.org/
dhttp://webppl.org

2

Note how the second sample construct is replaced with an observe construct. The program returns x, which is a (weighted)
sample from the posterior distribution of x, computed by updating the prior distribution of x (defined explicitly in the model)
with the observation that the coin flip resulted in true (conditioning on the observation). Supplementary Note Figure 1A shows
the prior distribution of the bias x, which corresponds to the Beta(2, 2) distribution. Note how the posterior distribution in
Supplementary Note Figure 1B has moved closer to 1 (bias towards heads), compared to the prior distribution.

The observe statement is a way of weighting a sample according to some distribution. It is basically equivalent to sampling
from a distribution, followed by conditioning, using the condition statement covered in the main texte. In WebPPL, there is also
a construct called factor, which performs explicit weighting (also called scoring) of samples. A score or weight for a specific
value can be computed using a distribution’s PDF. In WebPPL, there is a score method that gives back the score of a value for
a specific distribution. Thus, the observe statement in the previous example could be replaced with the following equivalent
encoding using factor:

factor(Bernoulli({p: x}).score(true))

The factor construct is often used explicitly in the phylogenetic models described in this paper, especially in WebPPL.

1.4 Recursive models and stochastic branching
In the previous examples, the models were very simple. However, the power of universal probabilistic programming is that a
model can be any program, which may include variable declarations and standard control flow operators. Consider the following
program that includes an if statement:
var mixture = function(){
if (sample(Bernoulli({p: 0.7}))) {
return sample(Gaussian({mu: -2, sigma: 1}))
} else {
return sample(Gaussian({mu: 3, sigma: 1}))
}
}

The model illustrates the use of stochastic branching, meaning that the paths taken in a program depend on the outcome of
sampling. In the example, the guard of the if statement samples from the Bernoulli distribution. Depending on whether the true
or false branch is taken, sampling of the resulting value is done with different Gaussian distributions (different µ values). The
plot of the model is shown in Supplementary Note Figure 1C. As can be seen in the figure, the true branch has larger weight,
because of the probability of 0.7 of it being chosen.

Stochastic branching can be combined with recursion: this is a key building block for phylogenetic models. Consider the
following model, which describes a model of the geometric distribution:
var geometric = function(p) {
if (sample(Bernoulli({p: p}))) {
return 1

} else {
return geometric(p) + 1

}
}

Note that there is no requirement of a deterministic termination of the recursion: the termination of the recursion depends on the
stochastic branch, which each time depends on a different latent random variable. Supplementary Note Figure 1D shows the plot
of geometric(0.6). The simple recursion above generates a linear sequence of random length. We use similar recursions in
our scripts to model the processes that generate bifurcating phylogenetic trees. We do that by including two recursive calls within
the same function, one for each descendant of a speciation event.

1.5 Inference
The focus of this tutorial text has so far been on the model (the probabilistic program), and not on the inference algorithms. As
discussed previously, in probabilistic programming, the choice of inference algorithm is intentionally separated from the model.
For instance, using the Infer method of WebPPL, a user can apply the Sequential Monte Carlo (SMC) method to perform the
inference of the coin example
Infer({model: coinFlip, method: ’SMC’, particles: 20000})

or, alternatively, a Markov chain Monte Carlo (MCMC) method can be used:
Infer({model: coinFlip, method: ’MCMC’, samples: 20000, burn: 5000})

The user also needs to specify the granularity of the approximation, using the number of particles or samples for SMC or MCMC,
respectively.

In general, a key strength of the probabilistic programming paradigm is its expressive power, which is clearly shown in this
paper within the domain of phylogenetics. One of the main research challenges within the PPL community is how to develop

eAccording to the WebPPL documentation, for efficiency, the observe statement should be used instead of the combination of sampling and conditioning,
especially for continuous distributions.

3

inference algorithms and compilers that scale to very large and complex models. Although this is an active area of research,
our study hopefully demonstrates that already state-of-the-art PPL systems make it possible to perform effective inference on
non-trivial phylogenetic models.

2 Tools for phylogenetic probabilistic programming

The paper is accompanied by a code repository containing all the sources, tools and data used for the study, including documen-
tation. Specifically, the resources in the repository are designed to facilitate the use of two existing probabilistic programming
languages—WebPPL and Birch—for phylogenetic inference. The code repository is available at:

https://github.com/phyppl/probabilistic-programming

The reader is referred to the README.md file in the repository, in which we describe how to install the tools and how to use
them to rerun our analyses or to experiment with probabilistic programming for phylogenetic problems.

2.1 WebPPL for statistical phylogenetics
WebPPL is a universal probabilistic programming language based on JavaScript. We have written two packages, phywppl and
phyjs that enable the reader to run phylogenetic simulations in WebPPL. The verification of the WebPPL programs relies on an
auxiliary R package, rppl. Please refer to the aforementioned online documentation for further explanation.

2.2 Birch for statistical phylogenetics
Birch is a universal probabilistic programming language compiling into C++. The models presented in this paper are run like
regular Birch packages. Refer to the aforementioned online documentation for further explanation.

2.3 Reading in phylogenetic trees
The WebPPL and Birch scripts we provide either simulate the diversification process along an observed reconstructed tree or
computes the likelihood using analytical equations for such a tree. To facilitate the import of the observed tree data, we use a new
JSON format for phylogenetic trees named PhyJSON18. Supported by the resources we provide in the repository, both WebPPL
and Birch have mechanisms for reading in phylogenetic trees stored in the PhyJSON format. We also provide a stand-alone tool,
nexus2phyjson, which can be used to convert trees in Nexus tree files to PhyJSON format18.

For convenience, we include several phylogenetic trees in the phyjs package for purposes such as testing and verification
(Table 1). An up-to-date account of the included test trees is provided in the webppl/phyjs/README.md file.

3 Diversification models

3.1 Basic notation and terminology
All of the diversification models considered in this study can be generically described as follows (see Table 2 for a summary
of the notation). The process starts at some time t0 > 0 in the past, where t = 0 represents the present time. Evolutionary
lineages split (speciate) at a per-lineage rate λ and go extinct at per-lineage rate µ. The rates λ and µ are either constant,
time-dependent or lineage-dependent, depending on the specific model. Each speciation event produces two lineages that further
evolve independently of each other. The process is stopped when reaching the present (t = 0), at which point lineages still
surviving are sampled (included in the observed tree) with probability ρ ≤ 1.

The diversification process generates both trees with lineages that survive until the present, and trees that go completely
extinct. Many surviving trees include side branches or whole subtrees that went extinct along the way. If the extinct parts and
the branches leading to unsampled taxa are pruned away, we get what is called the “reconstructed tree”. In other words, the
reconstructed tree is the subtree spanned by only those surviving lineages that have been sampled.

In diversification analyses, the focus is typically on reconstructed trees. For simplicity, we assume here that the reconstructed
tree is knownwithout error, butwe note that it is straightforward to extend our probabilistic programming approach to accommodate

Table 1 Example trees provided in the phyjs package.

Tree Leaves Age (Ma) Description Reference

phyjs.bisse_32 32 13.0 Example tree from Mesquite software 19

phyjs.cetacean_87 87 35.9 Cetacean tree from BAMMtools package 20

phyjs.primates_233 233 65.1 Primate tree from Diversitree package 21

4

Table 2 Summary of notation.

Symbol Interpretation

λ speciation (birth) rate
µ extinction (death) rate
ε turnover, µ/λ
ρ probability of sampling a leaf
λ(t) function characterizing time dependence of λ in some models
λ0 initial λ, when λ varies over time
z rate of exponential increase or decrease in λ
λi speciation rate of process or branch i
λi(t) time-dependent speciation rate of process i
µi extinction rate of process i
zi exponential rate of increase or decrease in λ for process i
α long-term trend in λ inheritance at speciation in ClaDS models
σ standard deviation (log scale) in λ inheritance at speciation in ClaDS models
η rate of switching of diversification process in the BAMM and LSBDS models
tMRCA age of most recent common ancestor
ψ reconstructed tree (extinct and unsampled side branches pruned away)
n number of leaves in the reconstructed tree
V the set of nodes (vertices) in the reconstructed tree
a(i) index of immediate ancestor of node i
l(i) index of left descendant of node i in oriented tree
r(i) index of right descendant of node i in oriented tree
c number of cherries (terminal bifurcations) in a tree
P(·) probability (density)
L(·) likelihood
S(t, θ) probability of process with parameters θ surviving from t until the present
Z normalization constant of Bayes’s theorem

uncertainty about the tree by drawing the tree from an appropriate tree sample. Learning the parameters of the diversification
process involves computing the likelihood of one or more reconstructed trees given different parameter values.

We denote a reconstructed tree ψ = (V, t), where V is a set of nodes (vertices) and t is a corresponding vector of speciation
ages. The tree has n tips (terminal nodes or leaves) of degree one, n − 1 interior nodes of degree three, and the origin node of
degree one. We index the nodes and their ages as follows:

• the origin has index 0;

• internal nodes have indices {1, 2, . . . , n − 1}, ordered in decreasing age;

• tips have indices {n, n + 1, . . . , 2n − 1} (in any order)

The node V1 corresponds to the first split between extant (surviving) lineages; it is referred to as the most recent common ancestor
(MRCA) or the root of the reconstructed tree. The age of a node i is ti; leaves have age 0. A subtree with root at node i and origin
at time t ≥ ti is denoted ψi(t).

We will often find it convenient to distinguish between the two descendants of a node; without loss of generality, refer to
them as the left and right descendant, respectively. A tree without leaf labels where nodes have been oriented in this way is an
“oriented tree”22.

We define three mapping functions for indices in an oriented tree:

• a(i) is the index of the immediate ancestor of node i

• l(i) is the index of the left descendant of node i

• r(i) is the index of the right descendant of node i

3.2 Conversions between tree spaces
In phylogenetics, we are interested in computing the likelihood of a labelled reconstructed tree, that is, a tree with leaf labels but
with no distinction between the two descendants of a given ancestor. However, it is often convenient to derive the probability
density of oriented trees without leaf labels first, and then convert it to a density on labelled trees without orientation22. The
conversion factor is easy to find if we consider what happens if we start with a density on an oriented tree, then label it and finally
remove the orientation. There are n! unique ways of labelling an oriented tree, each with probability 1/n!. When we remove

5

Table 3 Overview of phylogenetic diversification models considered in the paper.

Model Full name Reference

CRB Constant rate birth model Yule 24 , Nee 25

CRBD Constant rate birth-death model Feller 26
TDB Time-dependent birth model Kendall 27
TDBD Time-dependent birth-death model Kendall 27
BAMM Bayesian analysis of macro-evolutionary mixtures Rabosky 28

LSBDS Lineage-specific birth-death shift model Höhna et al. 29
ClaDS[0-2] Cladogenetic diversification rate shift models Maliet et al. 30

the orientation, there are 2n−1 labelled oriented trees that produce the same labelled tree without orientation, where n − 1 is the
number of interior nodes in the tree. Thus, the conversion factor is 2n−1/n!.

For completeness, we derive the conversion factor with the operations in the reverse order, first dropping the orientation
and then applying the labels. When labels are missing, there are 2n−1−c unique oriented trees for each tree without orientation,
where c is the number of “cherries”. A cherry is a pair of leaves that are each other’s closest relatives23; without labels the
descendants of a cherry are identical and there is only one unique way in which they can be oriented. Labelling a tree without
orientation is similarly affected by cherries, so that there are n! 2−c unique label assignments. The conversion factor is thus
2n−1−c/(n! 2−c) = 2n−1/n!.

In the literature on advanced diversification models, it is common practice to derive the density on unlabelled oriented trees
and ignore the conversion to a density on labelled unoriented trees; in fact, the omission of this factor is rarely acknowledged.
This contrasts with the derivation of the analytical likelihood for simple models, such as CRBD, where the conversion factor is
almost always accommodated. Previous work on diversification models has focused on a single model and a single tree; in such
cases, ignoring the conversion factor is not a problem. However, here we compare diversification models using Bayes factors, so
the normalization constant needs to be computed consistently for all models, that is, based on the same outcome space.

For convenience, our simulations of diversification processes assume unlabeled and oriented trees. This makes the scripts
simpler, and it facilitates comparison to previous descriptions of these models. Our simulations are weighted with the appropriate
conversion factor to generate the density for labelled and unoriented trees. Thus, the normalization constants (marginal likelihoods)
we compute are directly comparable to the likelihoods computed using the standard analytical equations established for the simple
diversification models, such as CRBD22, for labelled and unoriented trees.

3.3 Conditioning on the age of the MRCA
A process that starts at some time t0 in the remote past will produce a reconstructed tree that has a stalk, i.e., a branch leading
to the MRCA. However, we usually do not have any information about the length of this stalk. For this reason, and others, it is
often more convenient in practice to condition the process on the first split in the reconstructed tree, t1 22. This can easily be done
by noting that t1 can be considered the time of origin for both the left and the right subtrees originating from the first split, and
that both of these lineages survived until the present by the very definition of the concept of MRCA. Thus, the probability of the
reconstructed tree, conditioned on the age of the MRCA, is obtained by multiplying together the probabilities of the left and the
right subtrees and by conditioning on their joint survival. Given an oriented tree ψ, now without the “stalk” from the origin to
the most recent common ancestor, the likelihood is thus given by

L(ψ | θ, t1) =
P(ψl(1)(t1)|θ, t1)P(ψr(1)(t1)|θ, t1)

(S(t1, θ))2
, (1)

where θ is the vector of parameters of the model, and S(t, θ) is the probability of the process surviving (producing at least one
sampled descendant) after time t.

3.4 Diversification models
In the paper, we consider nine different diversification models (Table 3).

The CRB(D) and TDB(D) models are simple diversification models, which assume that the process is the same for the entire
tree, even though it can change over time. The other models (the advanced models) accommodate lineage-specific variation in
diversification rates. The BAMM and LSBDS assume that the diversification process changes in a major way at certain points
in time. In fact, the process is completely reset. Thus, LSBDS and BAMM can be described as models of punctuated change in
diversification. The ClaDS models instead assume gradual, heritable changes in speciation and extinction rates. Specifically, this
is modeled as small step-wise changes associated with speciation events (also called cladogenetic events).

We provide a tabular summary of the parameters of each model (Table 4) to facilitate comparison across them. We describe
each model in detail below.

6

Table 4 Summary of diversification model parameters.

Model Parameters Notes

CRB λ λ is speciation rate
CRBD λ, ε ε = µ/λ is turnover rate
TDB λ(t), z z is exponential time-dependence parameter
TDBD λ(t), ε, z
LSBDS η, {(λi, µi)} η is change rate, i is index of process
BAMM η, {(λi, µi, zi)} zi is time-dependence parameter of process i
ClaDS0 α, σ, {λi} α is trend parameter, σ is noise parameter in λ inheritance at speciation;

i is branch index in complete tree
ClaDS1 α, σ, µ, {λi} µ is extinction rate
ClaDS2 α, σ, ε, {λi} ε is turnover rate

3.4.1 Constant rate birth-death models (CRBD and CRB)

The constant rate birth-death (CRBD) model is the simplest model considered here. Evolutionary lineages split at a constant per-
lineage birth rate λ and go extinct at a constant per-lineage death rate µ. The parameter vector for this model is thus θ = (λ, µ, ρ).
As a special case, we consider the constant rate birth (CRB) model, also known as the Yule model, with µ = 025.

The probability that a CRBD process starting at time t survives until the present and is sampled is known analytically22; it is

S(t, λ, µ) = r
λ − (λ − r/ρ) e−rt , (2)

where r = λ − µ is known as the “net diversification rate”. The likelihood of a reconstructed tree conditioned on the time of the
MRCA is also known analytically; it is given by:

L(ψ |θ, t1) =
2n−1

n!
λn−2 ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti)

ĝ(0)n S(t1)2
, (3)

where
ĝ(t) = e−rt

(λ − (λ − r/ρ) e−rt)2
. (4)

Even though the likelihood is known analytically, there are no conjugate priors for λ and µ that would yield an analytical
posterior. Thus, we end up with an intractable integral if we want to learn these parameters from one or more observed trees.

3.4.2 Time-dependent birth-death models (TDBD and TDB)

In the time-dependent birth-death model (TDBD), the speciation rate is assumed to change continuously through time. More
specifically, we consider the following time-dependence:

λ(t) = λ0 ez(t1−t). (5)

Thus, λ0 is the speciation rate prevailing at the time of the MRCA. Furthermore, if z < 0 (resp. z > 0), the speciation rate
decreases (resp. increases) exponentially when going toward the present. An exponentially decreasing speciation rate can be seen
as an approximate model for diversity dependence. The parameter vector for this model is θ = (λ0, µ0, x, ρ).

The likelihood appears to be intractable for the presentmodel with exponentially varying speciation rate and constant extinction
rate. On the other hand, a simple solution is available for the slightly different model examined here, in which λ and µ are both
exponentially decreasing or increasing at the same rate z (and thus the turnover rate λ/µ is constant):

λ(t) = λ0 ez(t1−t),

µ(t) = µ0 ez(t1−t).

Under this model, the probability that a lineage starting at time t survives until the present and is sampled is now (for a general
method of deriving the likelihood for time-dependent birth-death models, see Morlon et al. 31):

S(t, λ0, µ0, z) =
r0

λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt)
, (6)

where r0 = λ0 − µ0. The likelihood of a reconstructed tree conditioned on the time of the MRCA has the same general form as
for the CRBD:

L(ψ |θ, t1) =
2n−1

n!
ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti) λ(ti)

ĝ(0)n S(t1)2
(7)

7

with S such as just given and:

ĝ(t) = e−(r0/z)(1−e−zt)(
λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt)

)2 . (8)

As a special case, we consider the time-dependent birth (TDB) model, which is equivalent to TDBD except that there is no
extinction, that is, µ = 0. Note that the TDBD model collapses to CRBD when z = 0. Similarly, TDB becomes equivalent to
CRB when z = 0.

3.4.3 Bayesian analysis of macroevolutionary mixtures (BAMM)

The BAMM model was proposed by Rabosky 28 . The original formulation of the change process is statistically incoherent32
but it is straightforward to fix this, and we follow the slight reinterpretation of the model suggested by Moore et al. 32 . In this
version, BAMM is an episodic, Poisson-modulated, birth-death process with exponentially decaying speciation rate. To describe
the process, consider a generic lineage e at time t. At this time point, the lineage is associated with rate parameters with index
e(t). Specifically, the lineage carries with it a triplet of rates (λe(t), µe(t), ze(t)). Then:

• at rate µe(t), the lineage goes extinct;

• at rate λe(t), the lineage splits into two lineages (say f and g), in which case the two daughter lineages inherit the current
rates, i.e.

(λ f (t), µ f (t), z f (t)) = (λe(t), µe(t), ze(t)),
(λg(t), µg(t), zg(t)) = (λe(t), µe(t), ze(t));

• λe(t) increases or decays exponentially at rate z;

• at rate η, the triplet of rate parameters is redrawn from a pre-specified trivariate distribution Φ, i.e.

(λe(t−), µe(t−), ze(t−)) ∼ Φ (9)

The process starts with a single lineage a at some time t0, with rate parameters (λa(t0), µa(t0), za(t0)) ∼ Φ. Specifically, we start
the process at the time immediately before the first split in the tree (at the MRCA), and we assume that the process index at this
point is a(tMRCA) = o (o for origin). The prior distributions used in this paper for Φ were chosen to harmonize with the priors
used for other models, as specified in the section on priors below. The process stops when reaching the present (t = 0) and the
surviving lineages are sampled with probability ρ.

The likelihood under the BAMMmodel as defined here does not have an analytical solution, nor does it seem to be amenable
to any known numerical techniques for solving the complex differential equations involved32. A recent paper33 analyzes a variant
of the BAMM model, which differs from the variant considered here in that the rate of diversification model shifts is considered
to be constant for a clade, regardless of the number of lineages the clade contains. This is a somewhat unusual type of model, as
lineages are usually considered to evolve independently and not as parts of a larger clade. Nevertheless, under this assumption
they succeed in deriving an analytical expression of the likelihood for the case of a single shift. They then extend this to multiple
shifts, keeping the likelihood computations manageable by assuming that a clade that has shifted diversification rates once cannot
shift again.

Describing the BAMM model as defined here (or in the clade-spanning variant) using a PPL is straightforward. Effective
inference can then be performed using generic techniques available for PPLs, such as SMC or PMCMC (particle Markov chain
Monte Carlo), as we show in the current paper. No artificial model constraints need to be introduced.

3.4.4 LSBDS

The recently proposed LSBDS model29 can be seen as a specialized version of the BAMMmodel, in which z = 0 at all times and
for all lineages. In other words, there is no exponential decay of speciation rates; the speciation rate remains constant between
rate shift events. As a result, Φ is now a bivariate distribution.

Under these conditions, it becomes possible to compute the likelihood of a reconstructed tree by approximatingΦ as a product
of two discrete distributions, with a finite (and small) number of possible values for λ and µ, and then relying on standard
numerical techniques for solving the differential equations involved34,29. This is similar to the discretization approach frequently
used in phylogenetics in order to efficiently approximate the likelihood when rates vary across sites according to a continuous
gamma distribution35.

Using this approach, the backward-in-time recursion for the extinction probability and for the conditional likelihood, which
are both conditioned on the current value of λ and µ for the lineage under consideration, entails a set of LM coupled master
equations, where L and M are the number of bins used for the λ and µ distributions, respectively. In practice, this imposes a
rather strict constraint on the number of discretization bins that can be used, as the computational complexity otherwise becomes
unmanageable. We note that the empirical examples discussed in the LSBDS paper all use a fixed value for µ across the tree,
thus effectively setting L = 1. The SMC techniques we use in the current paper do not suffer from such limitations, as they rely
on sampling values from the λ and µ distributions.

8

Another model that also eliminates the z variable of the BAMM model was presented recently36. This model is based on
restricting the number of possible diversification models to a finite number k of different diversification model categories. An
MCMC algorithm is then used to sample over different histories of shifts among these categories over the tree. To simplify the
computation of likelihoods, the authors further assume that no shifts among model categories occur on extinct side branches. In
our PPL and SMC context, we do not gain much by restricting the number of diversification rate models, and there is no need to
simplify the treatment of extinct side branches. Thus, we do not consider this model further here.

3.4.5 The cladogenetic diversification rate shift models (ClaDS)

The ClaDS models30 assume that the speciation rate changes by a small random amount at each speciation event. The extinction
rate is assumed to be either equal to 0 (ClaDS0), constant but positive (ClaDS1), or proportional to the speciation rate, such that
the turnover rate (ε = µ/λ) is constant (ClaDS2). Thus, in all cases, µ = µ(λ) can be seen as a (possibly constant, for ClaDS0
and ClaDS1) deterministic function of λ.

Consider a generic lineage e at time t. This lineage carries with it a rate λe. Then:

• at rate µ(λe), the lineage goes extinct;

• at rate λe, the lineage splits into two lineages (say f and g), in which case the two daughter lineages draw their respective
speciation rates, λ f and λg as follows:

log λ f ∼ N(log(αλe), σ2).
log λg ∼ N(log(αλe), σ2).

The process starts with a single lineage o at some time t0, with speciation rate λo.
The α parameter introduces a deterministic long-term trend in the otherwise random variation of λ through time, across

the many speciation events typically occurring over the complete phylogeny. When α < 1 (resp. α > 1), the logarithm of the
speciation rate decreases (resp. increases) on average at a speciation event.

The original ClaDS paper30 focuses on the mean diversification rate multiplier m = α exp(σ2/2) rather than on α. However,
we prefer the α parameterization because it allows us to find a convenient conjugate prior that supports delayed sampling and
thus makes SMC inference more efficient (see below).

There is some superficial resemblance between logα and the z parameter in the TDBD, TDB and BAMM models, also
suggesting that this would be a natural parameterization. However, the dynamics of the ClaDS models is quite different from the
TDBD, TDB and BAMM models. This makes the interpretation of both the α and m parameters more complicated than what is
immediately obvious. When there is noise in the ClaDS models (σ > 0), there will be variation across lineages in diversification
rate. This will result in lineage selection, ensuring that the average diversification rate across lineages goes up more than suggested
by the values of m or α 37. Even within lineages, there will be slight deviations from the behavior that might be expected from
the m (or α) values. For instance, when there is noise, setting m = 1 will result in the expected diversification rate at the end of
some specified time period being lower than the starting rate. This is because the process is more likely to reach the end of the
time period without any further change if the diversification rate goes down than if it goes up.

We note that it would be straightforward to estimate posterior distributions on m using our scripts even though they use the α
parameterization. This can be achieved either by adding a line that computes m from α and σ and then returns it to the model
scripts before running the analysis, or by converting the sampled α and σ values to m values after the analysis has completed.

The likelihood under the ClaDS1 and ClaDS2 models is not analytically available, but it can be numerically evaluated30. The
evaluation method originally developed for the ClaDS models involved various numerical approximation techniques, including
discretization of time and rate space, and expands over thousands of lines of code in the RPANDA R package. Recently,
considerably more efficient inference techniques based on data augmentation have been developed for these models37.

4 Prior probability distributions

To facilitate the interpretation of the Bayes factor tests, we standardized prior probability distributions across diversification
models as much as possible in our analyses. Before going into details, it may be helpful to explicitly declare the parameterizations
we assume for the statistical distributions used. Thus, for the exponential distribution, we assume the rate parameterization, for
the inverse gamma distribution we use the shape-scale parameterization, and finally, for the normal (Gaussian) distribution, the
parameters are the mean and the variance of the distribution.

Across all models, we used an Exponential(1) prior for the speciation rate, and a Uniform(0, 1) prior for the turnover rate, both
common priors in the diversification model literature. The specific implementations are listed for each model below. For the σ
parameter of the ClaDS models, Maliet et al. 30 used a prior with most probability mass close to 0 (σ ∼ InvGamma(1, log(1.1)).
Upon examination of the empirical results published in the same paper (shown in their Figure 4a), we concluded that this choice
is overly conservative. That is, the prior puts so much probability on low values of σ that the posterior may underestimate the
extent of lineage-specific variation in diversification rates. We also note that it is more natural to consider an inverse gamma
prior for the variance rather than the standard deviation of the normal distribution, since this is a conjugate prior for the normal
distribution. Therefore, we used a σ2 ∼ InvGamma(1, 0.2) prior in our analyses.

9

The original ClaDS paper30 used an improper prior for the α parameter. This is not suitable for our purposes, as we need to
simulate from the prior in SMC. We instead assumed logα ∼ N(0, σ2). By making the variance of the logα prior dependent on
σ2, we establish a conjugate normal-inverse-gamma prior. This results in a joint prior on (logα, σ2) that has its mode for α at 0,
at which point there is neither acceleration nor deceleration of speciation rates. The posterior distribution of α values reported
earlier for the bird trees under the Clads2 model30 is also well covered by this joint prior. For z, we used the prior proposed in the
original BAMM paper28, namely z ∼ N(0, 0.052).

Finally, for the LSBDS and BAMM models, we wanted a prior on η that was scaled to time. In the LSBDS and BAMM
papers29,28,38, it has been common to instead specify a prior scaled to the total length of the tree. This allows one, for instance, to
specify a prior with an expectation of one change in the diversification process over the reconstructed tree. However, if the changes
we observe in diversification rates are the result of some evolutionary process, then it would seem more reasonable to assume that
the expected number of changes is a function of evolutionary time rather than of an arbitrarily circumscribed reconstructed tree.
To obtain this effect, while still maintaining some scaling to tree size, we chose a prior with one expected change in diversification
rates over the time period from the most recent common ancestor to the present. For a small reconstructed tree, this would
correspond to an expectation of slightly more than one change over the tree, while the expectation could be more than a few
changes in a big tree. Specifically, we assumed η ∼ Exponential(tMRCA), where tMRCA is the age of the first split in the tree.

For completeness, all prior probability distributions are listed below for each of the examined models (see also Supplementary
Note Figure 2).

4.1 CRB
The CRB model has only one parameter, λ, for which we use the standard prior:

λ ∼ Exponential(1).

4.2 CRBD
The CRBD model has two parameters, λ and µ. For λ we use the standard prior, and for µ the indirect prior induced by assuming
a uniform prior on the turnover rate ε = µ/λ.

λ ∼ Exponential(1),
ε ∼ Uniform(0, 1).

4.3 TDB
For the TDB model, we applied the standard priors as follows:

λ0 ∼ Exponential(1),
z ∼ N(0, 0.052),

where λ0 is the initial speciation rate, and z is the time dependence parameter in λ(t) = λ0ezt . In other words, the standard λ
prior applies to the initial speciation rate in this model.

4.4 TDBD
The TDB priors are extended to the TDBD case as follows:

λ0 ∼ Exponential(1),
z ∼ N(0, 0.052),
ε ∼ Uniform(0, 1),

where λ0 is the initial speciation rate, z is the time dependence parameter in λ(t) = λ0ezt , and ε is the turnover rate. Note that in
our implementation we have kept the turnover rate constant (rather than the extinction rate), i.e., µ(t) = ελ(t).

4.5 ClaDS0
For the ClaDS0 model, we applied the standard λ prior to the initial speciation rate, in line with the TDB(D) models. The α and
σ priors are justified above. Specifically, the ClaDS0 priors we used are:

λ0 ∼ Exponential(1),
σ2 ∼ InvGamma(1, 0.2),

logα ∼ N(0, σ2),

where λ0 is the initial speciation rate, σ2 represents the variance in the inherited speciation rate and α is the speciation trend
parameter.

10

4.6 ClaDS1
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the initial turnover rate. The extinction rate, µ = ελ0, remains constant in the whole tree.

4.7 ClaDS2
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the turnover rate. Unlike ClaDS1, the extinction rate changes at each speciation such that the turnover remains constant
over the whole tree.

4.8 LSBDS

For the LSBDS model, we define the joint prior Φ, such that the all λi values, including the speciation rate for the MRCA (λo),
are drawn from the standard λ prior used for other models, and such that the µi values, including the value of the MRCA, are
drawn independently from the distribution induced by drawing ε from the standard uniform distribution used for other models.
Specifically,

η ∼ Exponential(tMRCA),
λi ∼ Exponential(1),
ε i ∼ Uniform(0, 1),

where η is the rate of shifts in diversification processes, tMRCA is the time (age) of the most recent common ancestor, and λi and
ε i are the speciation and the turnover rates of the i-th diversification process.

BAMM
The prior distributions for BAMM are the same as for LSBDS, with addition of

zi ∼ N(0, 0.052),

where zi is the time dependence parameter for the speciation rate of the i-th diversification process. This is the same prior
distribution used for the z parameter of the TDB and TDBD models.

5 PPL model descriptions

In this section, we describe the PPL model scripts we used in the paper. We focus on WebPPL, as we think these model scripts
are the most accessible to biologists. We start by describing model scripts that make use of the analytical likelihood equations.
We then present the complete description of the explicit simulation script for the CRBD model that is partly covered in the main
paper. Finally, we provide a brief overview of the simulation scripts for the remaining models. We end the section with a brief
discussion of how the Birch scripts are similar to and how they differ from the WebPPL scripts. For full details, we refer the
interested reader to the code repository accompanying the paper.

5.1 Scripts based on analytical likelihoods
As mentioned in Section 3, the likelihood of a reconstructed tree conditioned on the age of the MRCA and the parameters of
the diversification process is known analytically for the simple diversification models (CRB, CRBD, TDB, TDBD). We can
take advantage of this in probabilistic programs, facilitating efficient inference of model parameters, by scoring simulations
according to the analytical likelihood. To simplify the implementation of such scripts, we provide the analytical likelihoods as
deterministic functions in the phyjs library. Four functions are available. The function exactCRBDLikelihoodComplete
(tree, lambda, mu) computes the likelihood of a reconstructed tree under the CRBD model for specific values of λ
and µ, assuming complete sampling of the leaves (tips) in the tree, ρ = 1. The function exactCRBDLikelihoodRandom
(tree, lambda, mu, rho) computes the same likelihood when the leaves are randomly sampled with probability ρ <
1. Finally, the functions exactTDBDLikelihoodComplete (tree, lambda, mu, z) and exactTDBDLikelihoodRandom
(tree, lambda, mu, z, rho) compute the corresponding probabilities for the TDBD model. By setting mu = 0, the func-
tions can be used to compute the likelihoods for the CRB and TDB models.

The following listing shows how to infer the posterior distribution of λ and ε for the CRBD model using the analytical
likelihood and the MCMC inference method:

11

0 1 2 3 4 5

A λ

0.0 0.2 0.4 0.6 0.8 1.0

B ε

−0.2 −0.1 0.0 0.1 0.2

C z

−3 −2 −1 0 1 2 3

D logα

0.0 0.5 1.0 1.5 2.0

E σ2

0.00 0.05 0.10 0.15 0.20

F η

Fig. 2 Prior distributions of model parameters. The shaded regions correspond to the region of parameter space illustrated in the posterior plots
for the empirical analyses (Supplementary Note Figures 13–22). See also Supplementary Note Figure 23.

Algorithm 1 CRBD model with analytical likelihood.

1 var tree = phyjs.bisse_32
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b: 1.0 })
6 var mu = epsilon*lambda
7

8 factor(exactCRBDLikelihoodComplete(tree, lambda, mu))
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’MCMC’, samples: 100, lag: 10, burn: 1000, model: model})
14

15 dist

In the script, we first select one of the provided trees in the phyjs package. The model is then set up by specifying the priors on
the model parameters, and computing the value of the extinction rate µ, encoded as the variable mu. The simulation then scores
the simulation according to the analytical likelihood of the sampled parameter values using the factor construct. In the final
line of the model function, the values of the model parameters are returned.

For inferring the posterior distribution induced by the model function, the MCMC method is a good choice. For explanation
of the inference settings, see the WebPPL documentation of the MCMC methodf. The last line ensures that the estimated joint
posterior distribution, encoded as dist, is printed.

The script can be run using the commands we provide in the code repository accompanying this paperg, as explained in the
documentation provided there. In the directory webppl/phywppl/examples/ in the repository, we provide analytical scripts of
this kind for the CRB, CRBD, TDB and TDBD models.

5.2 Basic script for CRBD
Here, we give a complete WebPPL implementation of the CRBD model. The program describing the model is divided into two
files to facilitate reuse of the code. The simulation part is specified in one file, and the analysis part in another. The simulation
file contains code that simulates the CRBD process along a given tree for specified values of the model parameters. This file can
be reused unaltered regardless of the particular analysis one wants to perform. The analysis file contains the specification of the
priors, the data, and the inference method. This file needs to change from one analysis to another.

fhttp://docs.webppl.org/en/master/inference/methods.html#mcmc
ghttps://github.com/phyppl/probabilistic-programming

12

The analysis file (Algorithm 2) is structured in the same way as the script using the analytical likelihood for CRBD. However,
instead of calling a function to compute the analytical likelihood, we call the simulation function for the CRBD model. This
function weights the simulation appropriately for the given parameter values, conditioned on the observed reconstructed tree.
The model function returns the model parameters, as before. However, instead of inferring the posterior distribution on those
parameters, we now use SMC and focus on the normalization constant (the marginal likelihood or model evidence). The
normalization constant estimate is available in the normalizationConstant property of the distribution object returned by the
Infer function when the method is SMC. Similar example scripts are available in the webppl/phywppl/examples/ directory
for all models studied in the paper.

Algorithm 2 Analysis script for CRBD simulation.

1 var tree = phyjs.read_phyjson("bisse_32.phyjson")
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b:1.0 })
6 var mu = epsilon*lambda
7

8 simCRBDNaive(tree, lambda, mu)
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’SMC’, particles: 10000, model: model})
14

15 dist.normalizationConstant

Let us now turn to the simulation script (Algorithm 3). The script presented here is a naive PPL implementation of the
CRBD model in that it does not use the analytical likelihood. Instead, it explicitly simulates the speciation and extinction process
conditioned on the reconstructed tree. The script is also naive in the sense that it does not include any modifications to support
aligned SMC inference, which is important for improving inference efficiency. The advanced inference techniques we used in
the paper, including alignment, are discussed in Section 6. The script forms a basic template that can be used to express all
diversification models analyzed in our paper. It should also be straightforward to extend the script to a range of new diversification
models that have not been explored previously.

Algorithm 3 A complete WebPPL script for simulating CRBD.

1 var goesExtinct = function(startTime, lambda, mu)
2 {
3 var t = exponential({a: lambda + mu});
4

5 var currentTime = startTime - t;
6

7 if (currentTime < 0) {
8 return false
9 }

10

11 var speciation = flip(lambda/(lambda+mu))
12 if (!speciation)
13 return true;
14

15 return(crbdGoesExtinct(currentTime, lambda, mu)
16 && crbdGoesExtinct(currentTime, lambda, mu));
17 }
18

19 var simBranch = function(startTime, stopTime, lambda, mu)
20 {
21 var t = exponential ({a: lambda});
22

23 var currentTime = startTime - t;
24

25 if (currentTime <= stopTime)
26 return 0.0;
27

28 factor(Math.log(2.0));
29 condition (crbdGoesExtinct(currentTime, lambda, mu))
30

31 return simBranch(currentTime, stopTime, lambda, mu)
32 }
33

34 var simTree = function(tree, parent, lambda, mu)
35 {
36 factor(- mu * (parent.age - tree.age));
37

13

38 simBranch(parent.age, tree.age, lambda, mu);
39

40 if (tree.type == ’node’)
41 {
42 factor(Math.log(lambda));
43

44 simTree(tree.left, tree, lambda, mu)
45 simTree(tree.right, tree, lambda, mu)
46

47 }
48 }
49

50 var simCRBDNaive = function(tree, lambda, mu)
51 {
52 var numLeaves = phyjs.countLeaves(tree)
53 var corrFactor = (numLeaves - 1) * Math.log(2.0) - phyjs.lnFactorial(numLeaves)
54 factor(corrFactor)
55

56 simTree(tree.left, tree, lambda, mu)
57 simTree(tree.right, tree, lambda, mu)
58 }

The main function in the script is simCRBDNaive, defined at the end of the script. It takes three parameters: the model
parameters lambda and mu, and the tree on which to condition the simulation (note the actual implementation order). For
simplicity, the process is simulated along an oriented and unlabelled tree (see Section 3.2). This assumption allows us to ignore
the probability factor associated with rotation and labeling of the reconstructed tree during the main part of the simulation. To
ensure that the simulation nevertheless carries the right weight, it is first endowed with the appropriate rotation and labeling
probability (see Section 3.2) using two utility functions in the phyjs library and the factor construct in WebPPL. This is
important for computing the correct normalizing constant, but does not affect inference otherwise, since this probability factor is
the same for all simulations. Note that, for numerical stability, the particle weights in WebPPL are stored as logarithms.

Next, the function simTree is called on both children of the root node (the MRCA), initiating the recursion over the observed
tree. Note that simCRBDNaive does not return anything. It is called only for the side-effect of weighting the sampled lambda
and mu values by conditioning the simulation on the observed tree.

The function simTree is similar in structure to simCRBDNaive: it computes various weights and, if we have not reached a leaf,
continues the recursion. Here, we present a naive implementation of |simTree|, where the execution of the probabilistic program
is reweighted as soon as the information becomes available via calls to |factor|. A bit later, when we discuss advanced inference
techniques (Section 6), we will show a version of the script, which only reweights the particle after the hidden side-branches have
been processed. In the naive version, the first step is to factor the probability of no extinction on the branch from the parent to the
node (line 36). This corresponds to observing zero extinction events from a Poisson distribution parameterized by the extinction
rate |mu| and the branch length |parent.age - tree.age|, i.e. the weight can be obtained by plugging in 0 in the probability density
function (pdf) of the Poisson distribution. Next, we simulate the hidden side-branches (line 38), the function will re-weight the
computation accordingly. Finally, if we are at a node, we observe an immediate speciation event, i.e. 0 from an exponential
distribution with parameter |lambda|, which has the weight of |Math.log(lambda)|.

The simBranch function recursively simulates speciation events along the branch. If there is a speciation event, the side
branch it generates must go extinct, as it is not present in the observed reconstructed tree. We call such a speciation event a
“hidden” speciation because it is not visible in the observed tree. To condition the simulation on the extinction of the side branch
resulting from a hidden speciation, we require the call to the recursive simulation function goesExtinct to return true. The
goesExtinct function is described in the main paper; it is defined at the top of the script presented here. It simulates an outcome
of the birth-death process for given lambda and mu values, starting at a given time in the past and counting downwards until the
present (time 0). If all lineages go extinct before reaching the present, the function returns true, otherwise it returns false.
In connection with the call to goesExtinct, the simBranch function also needs to take a rotational factor into account. This
arises because there are two indistinguishable simulations that correctly account for the tree we condition on: one in which the
right descendant of the hidden speciation event goes extinct and the left descendant gives rise to the observed continuation of
the lineage, and one in which the left descendant goes extinct and the right descendant gives rise to the observed continuation
of the lineage. Thus, the correct probability score for the simulation is twice what would have resulted from a single call to
goesExtint, and we therefore need to add log 2 to the weight (recall that probability factors are represented on the log scale in
WebPPL) before continuing the recursion.

The analysis and simulation scripts described above are simplified versions of the example script crbd-naive.wppl in the
webppl/phywppl/examples/ directory, and the similarly named model script in the webppl/phywppl/models/ directory.
The simulation script presented here differs in four details from the model script in the repository. First, the script in the
repository accommodates the possibility of incomplete sampling of the leaves in the tree. Thus, there is an additional parameter
ρ in the model, encoded as the variable rho in the script. This variable appears as an argument to all simulation functions. The
goesExtinct function needs to take the sampling probability into account, and is aptly renamed to goesUndetected.

Second, the definitions of the simTree, simBranch and goesUndetected functions are hidden inside the simCRBDNaive
function. This allows us to use the same generic names for these functions in all diversification models; only the simulation
function needs to have a unique name. Hopefully, this facilitates for readers to recognize how we extended the basic template to
accommodate the other diversification models.

14

Third, the script in the repository employs guards against extreme values of the lambda variable, which can otherwise cause
problems with numerical exceptions or stalled simulations. We solve these problems by assigning zero weight to the simulation
if the lambda value is above or below certain threshold values. We verified that the discarded simulations have negligible impact
on the inference for all the examined models using the chosen guard values.

Finally, unlike the simple script described here, the script in the repository corrects for survivorship bias as explained in the
next section. Before moving on to this, we want to point out that the naive CRBD simulation is suitable mainly for exploratory
analyses of small trees. For efficient inference in WebPPL on phylogenetic diversification models for larger trees, it is important
to manually modify the scripts so that they support aligned SMC inference (see Section 6.1). The CRBD model is the only model
for which we provide an unaligned (“naive”) model script.

5.3 Correcting for survivorship bias
As discussed above (Section 3.3), if we condition the simulation on the age of the MRCA, we implicitly condition on the survival
of the two subtrees originating at this point in time. To do this in a probabilistic program, we need to divide the probability of a
simulation by S(tMRCA, θ)2, that is, the square of the probability that the process survives (and is sampled) if it starts at tMRCA,
and the model parameter values are θ. If S(t, θ) is not available in closed form, this is potentially cumbersome because it involves
a sum and integral over an infinite number of realizations of the process for each simulation. However, we can solve this by
observing that the division by S(tMRCA, θ)2, which we cannot evaluate in general, can be rewritten as follows:

p(θ |ψ, survival) ∝ p(θ)p(ψ |θ)
S(tMRCA, θ)2

= p(θ)p(ψ |θ)
∞∑

M=1
M (1 − S(tMRCA, θ)2)M−1 S(tMRCA, θ)2. (10)

This shows that we can correct for the survivorship bias by using the generative model encoded in the function goesExtinct (or
goesUndetected) to simulate two evolutionary processes starting at tMRCA. We repeat this until both simulations survive to the
present time, and multiply the weight of the rest of the simulated diversification process along the observed tree by the number
of repetitions required to achieve this.

In WebPPL, we use the following recursive function to compute the number of simulations required until both trees survive:
var M_goesExtinct = function(t, lambda, mu)
{
if (!goesExtinct(t, lambda, mu) && !goesExtinct(t, lambda, mu))
return 1

else
return 1 + M_goesExtinct(t, lambda, mu)

}

The following lines are then inserted at the end of the simulation function simCRBDNaive to correctly condition on the survival
of the two subtrees defining the MRCA:
var M = M_goesExtinct(t, lambda, mu)
factor(Math.log(M))

The script in the repository is slightly more complex because we take incomplete sampling into account, and also implement a
guard against an excessive number of repetitions.

5.4 Scripts for other diversification models
Example analysis scripts for all models are provided in the directory webppl/phywppl/examples/, and genericmodel simulation
scripts in the directory webppl/phywppl/models/. All simulation scripts we provide in the latter directory are set up to trigger
aligned SMC inference in WebPPL. As mentioned above, the only exception is the CRBD model, where we provide both a
naive, unaligned version (phywppl/models/crbd-naive.wppl) and an aligned version (phywppl/models/crbd.wppl) for
instructional and testing purposes. We provide both scripts using analytical likelihoods and scripts using explicit simulation for
all simple diversification models (CRB, CRBD, TDB, TDBD). The scripts for the CRB, TDB and TDBD models involve simple
and straightforward modifications of the corresponding scripts for the CRBD model, described above.

The model scripts for all lineage-specific diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS, BAMM) follow the
template described above for the CRBD model, including the modifications needed to trigger aligned SMC inference. Analogous
component functions are used in the simulation scripts; they are even named the same except for the main simulation function,
which is named after the corresponding diversification model.

In probabilistic programming, you have to be explicit about the model variables that you want to estimate. These are the
variables that are returned from the model function. The focus in our study was on the normalization constant and the main
model parameters. Therefore, our model simulation scripts do not have to return anything, as all relevant parameters are defined
already in the analysis scripts in the webppl/phywppl/examples/ folder. However, readers may well be interested in sampling
the outcome of a diversification process along the tree. For instance, it may be desirable to analyze parameters such as the number
and location of change events on different lineages, or the mean speciation rate for individual branches in the tree. To facilitate
such analyses, we give an example model script for the ClaDS2 model returning the entire reconstructed tree, with descriptions
of the outcome of the simulation process for each branch and node in the tree in extended Newick format. This script is found in
the webppl/phywpppl/models/ folder.

15

5.5 Birch model scripts
Birch is an object oriented probabilistic programming language. It uses more concise syntax than WebPPL for the probabilistic
constructs. For example, the assume statement in the form
x ~ Exponential(1);

is used to express that a random variable (x in the example above) is distributed according to a given probability distribution
(an exponential distribution with rate 1). Execution of such a statement depends on whether the variable has a value or not. If
it has, its behavior is equivalent with an observe statement; if not, the variable is associated with the given distribution. Birch
uses delayed sampling, so a concrete value might not be sampled until needed. Birch also supports explicit sample and observe
statements. To draw a value from an exponential distribution with rate λ, we would write
t <~ Exponential(λ);

To state that an outcome of a random variable distributed according to a Poisson distribution with rate λ is 0, we would write
0 ~> Poisson(λ);

The factor statement in WebPPL corresponds to yield FactorEvent(log_factor). To simplify the diversification model
definitions, we have defined two helper functions for commonly used yield statements.
yield duple();

corresponds to
yield FactorEvent(log(2));

and is used to account for the rotational factor at hidden speciation events. Similarly,
yield impossible();

is the same as
yield FactorEvent(-inf);

and it is used when simulated side branches resulting from hidden speciation do not go extinct, that is, when they are incompatible
with the observed tree. Note that yield impossible() statement also ceases the execution of the particle.

As we have mentioned above, Birch is an object-oriented language and the models take advantage of this. For instance, the
CRBDmodel script defines a CRBDModel class, which is derived from a base class called PhyModel. Let us examine a somewhat
simplified version of the CRBDModel class definition (Algorithm 4), to see how it compares to the WebPPL script.

Algorithm 4 CRBDModel class definition in Birch (somewhat simplified)

1 class CRBDModel < PhyModel<PhyNode, PhyParameter> {
2 λ_k:Real;
3 λ_θ:Real;
4 ε_min:Real;
5 ε_max:Real;
6 ρ:Real;
7

8 fiber initial() -> Event {
9 super.initial();

10 θ.λ ~ Gamma(λ_k, λ_θ);
11 θ.ε ~ Uniform(ε_min, ε_max);
12 }
13

14 fiber step() -> Event {
15 count:Random<Integer>; // number of (hidden) speciation events
16 count ~ Poisson(θ.λ * (node.t_beg - node.t_end));
17 for i in 1..Integer(count) {
18 t:Random<Real>;
19 t ~ Uniform(node.t_end, node.t_beg);
20 simulateUnobserved(t);
21 yield duple();
22 }
23

24 0 ~> Poisson(θ.λ * θ.ε * (node.t_beg - node.t_end));
25

26 if node.isSpeciation() {
27 0.0 ~> Exponential(θ.λ);
28 }
29 }
30

31 fiber simulateUnobserved(t_beg:Real) -> Event {
32 Δ_d:Random<Real>; // waiting time until an extinction event
33 Δ_d ~ Exponential(θ.λ * θ.ε);
34 t_d:Real <- t_beg - Δ_d;
35 if t_d < 0 {

16

36 // Species survived to the present time
37 yield impossible();
38 }
39

40 count:Random<Integer>; // number of speciation events
41 count ~ Poisson(θ.λ * (t_beg - t_d));
42 for i in 1..Integer(count) {
43 t:Random<Real>;
44 t ~ Uniform(t_d, t_beg);
45 simulateUnobserved(t);
46 }
47 }
48 }

The CRBDModel class is derived from the class PhyModel, which is a templated class. The base class takes care of tasks that
are common to all diversification models, such as walking over the tree. This is analogous to the recursive calls in the simTree
function in the WebPPL script (Algorithm 3), which also walk over the branches in the tree. At the top of the class definition, the
member variables and their types are declared. These are the parameters of the prior distributions for the model variables λ and ε .
The parameters are assigned specific values when the class is instantiated in connection with running the program. The inference
settings and input values for the analyses are in the config/crbd.json file and in each of the input/<name of tree>.json
input files.

Instead of member functions, the class defines several member fibers. A fiber (also known as a coroutine) is similar to
a function, but the execution might be paused (e.g., to resample the particles) and resumed. The initial fiber initializes the
simulation by assuming lambda and epsilon to be distributed according to the appropriate priors. Note that these model
variables are packaged inside an object called θ.

The step fiber corresponds to the simBranch function in the WebPPL script. In Birch, we use a different method for
simulating the speciation and extinction events than inWebPPL. Rather than drawing the waiting times between hidden speciation
events, we use the fact that the number of hidden events is described by a Poisson distribution, and the event positions are
uniformly distributed over the branch length. This simulation method is faster than drawing each of the waiting times. In the line
0 ~> Poisson(θ.λ * θ.ε * node.branch_length);

we condition on the fact that there are 0 extinction events on the branch (recall that µ = λε). In WebPPL, we used a factor
statement with the appropriate probability instead, which is an alternative way of accomplishing the same thing. Finally, in the
line
0.0 ~> Exponential(θ.λ);

we condition on there being a speciation at the end of the branch (if it ends in an interior node). Equivalently, we could have
factored in log λ, as we did in WebPPL, with a yield statement.

The simulateUnobserved fiber corresponds to the goesExtinct function in WebPPL. However, here we first simulate the
time until the branch goes extinct. If the branch does not go extinct, we set the weight to zero, effectively killing off the simulation.
If it does go extinct, we simulate the hidden speciation events along the branch, and call simulateUnobserved recursively for
each of those events.

The code described above is subject to change, as Birch is developing rapidly. However, this section illustrates the basic Birch
features, and how they can be used to code diversification models efficiently. Hopefully, it also sheds additional light on general
PPL concepts, as it gives alternative but equivalent ways of coding some model elements compared to the WebPPL scripts we
have seen previously.

6 Inference

In this section, we provide additional details on the non-standard algorithms we used to allow efficient PPL inference on
phylogenetic diversification models.

6.1 Alignment
The encoding of the CRBD model given in Section 5.2 is rather natural—it is simply a description of the birth-death process,
with a few calls to factor to correct for some probability effects that we do not model explicitly. Unfortunately, the default SMC
algorithm implemented in WebPPL is quite inefficient for this naive implementation of the birth-death process. The algorithm
always resamples particles (simulations are called particles in the SMC algorithm) at calls to factor and condition. Since, for
every execution of the program, there is a different number of hidden speciation events on each branch in the observed tree, this
will cause the SMC particles to get out of sync at resampling points. Particles that have few hidden speciation events may reach
the end of the simulation long before particles that have many hidden speciation events. Thus, if we always resample at hidden
speciation events, we will be comparing particles that can be at very different points in the simulation.

Intuitively, one might expect that it would be better to compare the particles only when they reach the same points in the
probabilistic program. We call this alignment of the SMC resampling points. In the diversification models, we could, for instance,
make sure that the resampling occurs only at the branching points in the observed tree. To explore this idea, we “tricked” the

17

SMC algorithm in WebPPL to align the resampling points by introducing a few modifications to the birth-death simulation in the
simBranch and simTree functions, as illustrated in the code below (compare to the naive CRBD simulation presented above in
Algorithm 3):

Algorithm 5 A complete WebPPL script for simulating CRBD.

1 var simBranch = function(startTime, stopTime, lambda, mu)
2 {
3 var t = exponential ({a: lambda});
4

5 var currentTime = startTime - t;
6

7 if (currentTime <= stopTime)
8 return 0.0;
9

10 var sideDetection = crbdGoesUndetected(currentTime, lambda, mu)
11 if (sideDetection == false)
12 return (-Infinity)
13

14 return simBranch(currentTime, stopTime, lambda, mu)
15 + Math.log(2.0);
16 }
17

18 var simTree = function(tree, parent, lambda, mu)
19 {
20 var lnProb1 = - mu * (parent.age - tree.age);
21

22 var lnProb2 = (tree.type == ’node’ ? Math.log(lambda) : 0);
23

24 var lnProb3 = simBranch(parent.age, tree.age, lambda, mu);
25

26 factor(lnProb1 + lnProb2 + lnProb3)
27

28 if (tree.type == ’node’)
29 {
30 simTree(tree.left, tree, lambda, mu)
31 simTree(tree.right, tree, lambda, mu)
32 }
33 }

Specifically, we need the WebPPL SMC implementation to skip the resampling induced at the calls to factor and condition
within simBranch in the naive model script. We achieve this by replacing the factor and condition statements in the
simBranch function by code that accumulates the weight and returns it to simTree. The accumulated weight is then passed
as an argument to factor in simTree, after the entire branch has been processed, triggering resampling at this point. The
factor statement is also passed the probability of no extinction on the branch (lnProb1), and the likelihood of a speciation at
the end of the branch, if it is an interior branch in the observed tree (lnProb2). Note that, to improve efficiency, we immediately
return -Infinity in simBranch if a call to goesExtinct returns false, since there is no need to continue the recursion if this
occurs. By modifying the simulation script in this way, the SMC particles stay in sync. There are no triggers of resampling in the
simBranch recursion, so resampling is always performed in simTree, in between processing branches of the observed tree.

Simulations on a few example trees of varying sizes confirm that this indeed improves SMC efficiency on diversification
models considerably (Supplementary Note Figure 3). The larger the tree, the more important it is for SMC performance to align
the resampling points in this way. Ideally, one should not have to manipulate model scripts in the way described above; alignment
should be applied automatically when it improves SMC efficiency. This is an idea that we are exploring within the TreePPL
project. The goal is to analyze the potential performance gains induced by resampling, and then apply it intelligently either in
the compiler and/or the language runtime. We separately present a static analysis for automatic alignment of programs39. Note
that alignment is not guaranteed to improve accuracy—in certain cases, it might actually degrade performance. However, for all
models considered here, alignment is beneficial.

6.2 Delayed sampling
Probabilistic computations involve not only simulation and observation, as represented by the sample and observe statements
in a PPL, but also such computations as marginalization, enumeration, and conjugate updating.

Consider the following joint distribution between two variables x and λ:

p(x, λ) = p(x | λ)p(λ), (11)

where the two factors on the right are encoded in the probabilistic program as, for example:

λ ∼ Gamma(1, 1),
x ∼ Poisson(λ).

18

-2
50

-2
00

-1
50

Aligned Naive

32 Taxa

lo
g

Z

-6
50

-6
00

-5
50

Aligned Naive

87 Taxa

lo
g

Z

-1
70

0
-1

65
0

-1
60

0

Aligned Naive

233 Taxa

lo
g

Z

Fig. 3 A comparison of the precision in the estimated normalization constant between naive and aligned CRBD. Left: 32-taxon tree (Bisse_32).
Center: 87-taxon tree (Cetaceans_87). Right: 233-taxon tree (Primates_233). SMC inference with 10,000 particles in WebPPL. Dotted line:
exact analytical solution. Parameters: λ = 0.2, ε = 0.5, complete sampling of leaves assumed (ρ = 1).

We may wish to compute the marginal distribution of x:

p(x) =
∫

p(x | λ)p(λ) dλ, (12)

or, given a value of x, compute the posterior distribution over λ:

p(λ | x) = p(x | λ)p(λ)
p(x) . (13)

Evaluations such as these can be performed analytically for random variables with a conjugate relationship (such as the gamma-
Poisson relationship in the example above), or for discrete random variables where all possible outcomes can be enumerated.
This can improve the performance of inference by, for example, reducing the variance in statistical estimators, such as that for the
marginal likelihood.

Delayed sampling6 is a particular heuristic that may be employed by a PPL to identify and leverage such situations to
improve inference outcomes. It does so in a manner that produces correct results, even for programs with stochastic branches and
unbounded recursion as may be encountered in Turing-complete programming languages. It is not necessary for the programmer
to painstakingly code such computations by hand.

We have used delayed sampling extensively in this work, substantially reducing the variance in marginal likelihood estimates.
In particular, for Poisson processes on trees, gamma prior distributions over rates are conjugate either to the Poisson-distributed
number of events in a given time interval, or the exponentially-distributed time between events. These rate parameters are then
automatically marginalized out by delayed sampling, substantially reducing variance in the marginal likelihood estimate for these
models. The same approach to handling parameters is used in Kudlicka et al. 40 and Wigren et al. 41 . Delayed sampling is only
available in Birch at this point.

6.3 Alive particle filter
The resampling step in SMC amounts to drawing N samples (with replacement) from the current set of N particles with
probabilities proportional to their weights. While simulating the evolution of unobserved side branches, if any species survives
to the present day (and is sampled), the weight of the particle must be set to 0. This leads to sample impoverishment—there are
fewer particles to choose from during resampling. In extreme cases, where all particles have zero weight, there are no particles
to choose from at all, and the algorithm fails. This can be a serious problem for SMC inference on diversification models when
the likelihood of extinction of side branches is low. For instance, this can occur if the net diversification rate (λ − µ) is high.

The extended alive particle filter40—the development of which from the initial version of this algorithm42 was inspired by
phylogenetic diversification models—solves these two problems by replacing the particles with zero weights with new samples
drawn from the particle set at the previous time step (again with probabilities proportional to the particle weights at that time)
and repeating the propagation step (the simulation from the previous resampling point until the current resampling point). This
replacing procedure is repeated until the weights of all particles are positive. Note that in order to estimate the marginal likelihood
without bias, one needs to repeat this procedure for one additional particle. However, with a reasonable number of particles, this
extra computational cost is negligible, and we therefore applied the alive particle filter to all analyses. The alive particle filter is
only available in Birch at this point.

19

6.4 Tree orientation
During the course of the study, we discovered that the orientation of the nodes in the observed tree can have a noticeable influence
on the efficiency of SMC inference for some trees. The effect appears to be associated with highly imbalanced trees, which may
be oriented such that left and right subtrees systematically have different properties. A depth-first SMC algorithm can apparently
become misled by the imbalance between left and right descendants in such trees, so that early resampling events can select
particles that do not do well towards the end of the simulation, decreasing the quality of the final estimate. We found that orienting
all nodes such that the descendant branch with the shortest subtree length was always processed first solved this problem. Thus,
all trees were reoriented in this way before final analyses in Birch.

7 Verification

We performed a wide range of experiments to verify that the model scripts are correct. For all tests involving WebPPL or
third-party software, the full set of experiments—including the source code, data, graphs and reports—can be found in the
directory verification of the phywppl package. The verification experiments involving Birch were performed by changing
the input files and/or models to fix the values of selected parameters. The results from these experiments are included in the
above-mentioned directory, together with the results from the experiments involving WebPPL.

Here, we only present a summary of the experiments. They all use the 32-taxon example tree, which we provide as one of
the builtin trees in the phyjs package. The tree has been previously used as an example in diversification model papers; it is
originally from the Mesquite software19 but does not appear to have been published separately. Only scrips adapted for aligned
SMC inference were used in the verification experiments.

The experiments are based on several lines of attack. In the first round of tests, we used the fact that there are analytical
solutions for the likelihood of the simple diversification models (CRB, CRBD, TDB and TDBD) under specific parameter values.
Thus, we could verify that the normalization constant computed by SMC from our explicit simulation scripts for the same models
(the scripts that simulate the process along the tree instead of calling the likelihood function) matched the corresponding analytical
likelihoods for a wide range of specific parameter values. These tests are important because the explicit simulation scripts for the
simple models served as templates for the scripts describing the more complex models.

The second round of tests were based on the observation that the more complex diversification models (ClaDS0, ClaDS1,
ClaDS2, LSBDS and BAMM) all collapse to simpler models with analytically known likelihoods under specific parameter
settings. This allows us to verify that the normalization constant computed from the scripts for the complex models matched the
corresponding analytical likelihoods for select points in parameter space.

For other points in parameter space, we cannot verify the scripts for the more complex models against analytical likelihoods,
but we can use other approaches to test their correctness. For instance, the WebPPL and Birch scripts for the complex models
were implemented independently by different co-authors of this paper, and the inference algorithms in WebPPL and Birch were
also different and based on independent implementations. In the third round of tests, we verified that the WebPPL and Birch
scripts for the complex models gave the same normalization constant for a grid of parameter values despite these differences.

The fourth round of tests took advantage of the independent implementations available in third-party software for the ClaDS
models43 and for LSBDS29. We verified that our scripts for these models resulted in the same estimates of the likelihood as
these implementations for a select set of parameter values, despite being based on entirely different code bases and computational
strategies.

Third-party software also exists for BAMM38 but it does not compute correct likelihoods for the model32, so it cannot be
used to verify our scripts. However, the BAMM model collapses to the LSBDS model when all zi = 0. We therefore verified
that our BAMM model script results in the same likelihood estimates as the LSBDS model script under select parameter values
matching this constraint but lacking analytical solution.

7.1 Simple models against analytical likelihoods
All simulation scripts for simple models (CRB, CRBD, TDB and TDBD) generated normalization constant estimates that matched
the corresponding analytical likelihoods very closely. We observed some variance in the estimates for high λ values, but these
parameter values have low likelihood and are thus less important for inference (Supplementary Note Figure 4). All λ × ε
combinations for two values of ρ: ρ = 0.5 (incomplete sampling in the order of magnitude of the ρ-range for the bird trees) and
ρ = 1 (complete sampling) have been checked.

7.2 Complex models against analytical likelihoods
All model scripts for advanced diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS and BAMM) generated normalization
constant estimates that matched analytical likelihoods under parameter settings for which closed solutions exist (Supplementary
Note Figure 5, 6). Again, we checked all λ × ε combinations for two values of ρ: ρ = 0.5 (incomplete sampling in the order of
magnitude of the ρ-range for the bird trees) and ρ = 1 (complete sampling).

20

0.0 0.2 0.4 0.6 0.8 1.0

-2
40

-2
20

-2
00

-1
80

-1
60

-1
40

WebPPL CRBD vs CRBD (analytical)

λ

lo
g

 Z

A1

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
40

-2
20

-2
00

-1
80

-1
60

-1
40

WebPPL CRBD vs CRBD (analytical), ρ = 0.5

λ

lo
g

 Z

A1b

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
40

-2
20

-2
00

-1
80

-1
60

-1
40

WebPPL TDBD vs TDBD (analytical)

λ
o

lo
g

 Z

D2

z = -0.1
ε = 0.1
z = -0.1
ε = 0.5
z = 0.1
ε = 0.1
z = 0.1
ε = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

-2
40

-2
20

-2
00

-1
80

-1
60

-1
40

WebPPL TDBD vs TDBD (analytical), ρ = 0.5

λ
o

lo
g

 Z

D2b

z = -0.1
ε = 0.1
z = -0.1
ε = 0.5
z = 0.1
ε = 0.1
z = 0.1
ε = 0.5

Fig. 4 Verification of explicit simulation scripts (WebPPL) for simple diversification models: normalization constants match analytical likelihoods
for select parameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated under the main title.

21

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS0 vs CRBD (analytical)

λ
o

lo
g

Z

A3

ε = 0

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS0 vs CRBD (analytical), ρ = 0.5

λ
o

lo
g

Z

A3b

ε = 0

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS1 vs CRBD (analytical)

λ
o

lo
g

Z

A4

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS1 vs CRBD (analytical), ρ = 0.5

λ
o

lo
g

Z
A4b

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS2 vs CRBD (analytical)

λ
o

lo
g

Z

A5

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL ClaDS2 vs CRBD (analytical), ρ = 0.5

λ
o

lo
g

Z

A5b

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

Fig. 5 Verification of WebPPL simulation scripts for the ClaDS[0-2] models: normalization constants match analytical likelihoods for select pa-
rameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated under the main title.

22

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL LSBDS vs CRBD (analytical)

λ
o

lo
g

 Z

A6

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL LSBDS vs CRBD (analytical), ρ = 0.5

λ
o

lo
g

 Z

A6b

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL BAMM vs CRBD (analytical)

λ
o

lo
g

 Z

A9

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

-1
90

-1
80

-1
70

-1
60

-1
50

-1
40

WebPPL BAMM vs CRBD (analytical), ρ = 0.5

λ
o

lo
g

 Z

A9b

ε = 0
ε = 0.1
ε = 0.5
ε = 0.9

Fig. 6 Verification of WebPPL simulation scripts for lineage-specific diversification models (complex models): normalization constants match
analytical likelihoods for select parameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated
under the main title.

23

Table 5 Cross-verification of WebPPL and Birch for ρ < 1.

WebPPL Birch
Model ρ mean log Z std. dev. log Z mean log Z std. dev. log Z

BAMM 0.1 -146.839 0.623 -146.608 0.279
BAMM 0.5 -139.612 0.198 -139.544 0.089
ClaDS0 0.1 -152.348 0.921 -150.540 0.663
ClaDS0 0.5 -142.506 0.450 -142.528 0.173
ClaDS1 0.1 -153.957 2.003 -151.245 0.635
ClaDS1 0.5 -143.422 0.351 -143.385 0.164
ClaDS2 0.1 -152.426 1.578 -151.747 0.915
ClaDS2 0.5 -143.085 0.315 -143.000 0.161
CRBD 0.1 -172.826 0.093 -172.795 0.089
CRBD 0.5 -143.259 0.083 -143.314 0.077
LSBDS 0.1 -172.794 0.120 -172.819 0.095
LSBDS 0.5 -143.361 0.075 -143.321 0.032
TDBD 0.1 -145.567 0.989 -145.042 0.063
TDBD 0.5 -139.039 0.263 -139.028 0.000

7.3 Birch and WebPPL cross-verification
Under parameter and prior settings for which closed solutions do not exist, the independently developed Birch andWebPPL scripts
for advanced diversification models resulted in matching normalization constant estimates. Birch estimates were slightly more
precise than WebPPL estimates (Supplementary Note Figure 7) but this is expected given the more powerful inference algorithms
used by Birch. In the tests illustrated in the figure, ρ = 1 is assumed. To verify that our code is correct also for ρ < 1, we ran
several additional grid point experiments as summarized in Table 5. All experiments in the table were conducted on the 32-taxon
tree using the standard priors, except for λ = 0.2, ε = 0.5, and ρ, for which point values were used instead. For TDBD, the Birch
implementation uses the analytical solution.

7.4 Verification of ClaDS models against RPANDA
Verification of the probabilistic programs and PPL inference algorithms described in this paper against the reference RPANDA
implementation of the ClaDS models is quite involved, and would not have been possible without extensive help from the author
of the ClaDS code in RPANDA (Odile Maliet), as computation of the likelihoods with RPANDA is not part of its public API.
RPANDA computes the likelihood for points in parameter space where all the initial λi values for the branches in the reconstructed
tree are known, as well as the λo value, pertaining to the MRCA of the tree. The likelihood in RPANDA is also conditioned on
specific values of the model parameters α and σ, as well as on µ (for ClaDS1) or ε (for ClaDS2). The ClaDS0 likelihood function
in RPANDA is based on analytical equations, while the ClaDS1 and ClaDS2 functions are based on numerical approximations
using a variety of techniques. In addition, the functions only give the density up to a proportionality constant, further complicating
direct comparisons with our scripts.

The RPANDA setup means that the PPL scripts have to condition on specific values for all of the model parameters, including
the initial λ values for all branches, to emulate the RPANDA likelihood computations. To be able to conduct the verification
experiments, we decided to use a fixed value λ f for λo and all λi parameters of the model in our WebPPL scripts; we did not
attempt to perform these verification experiments in Birch. We then chose a range of λ f values, and explored these points in
parameter space under some specific values of α, σ and µ (for ClaDS1) and ε (for ClaDS2). Likelihoods for the same points in
parameter space were then computed in RPANDA with the analytical likelihood function (for ClaDS0) and the numerical solvers
(for ClaDS1 and ClaDS2). In the git repository accompanying the paper, we provide both the WebPPL scripts emulating the
RPANDA computations and the R scripts we used to compute likelihoods for the corresponding points in parameter space with
RPANDA.

For ClaDS0, the initial experiments showed that the likelihood function in RPANDA computes densities that very closely
match the densities expected for oriented and unlabeled trees. Thus, we concluded that the proportionality constant for the ClaDS0
likelihood function in RPANDA is the same as the conversion factor from densities on oriented and unlabeled trees to densities
on labeled, unoriented trees. This factor is Lp = log(2(n−1)/n!), where n is the number of leaves in the tree (see Section 3.2).

When controlling for this, the likelihoods estimated by WebPPL for ClaDS0 are consistent with those computed by RPANDA
(Supplementary Note Figure 8). For points in parameter space where ClaDS1 and ClaDS2 collapse to ClaDS0, that is, for points
where µ = ε = 0, likelihoods estimated by WebPPL and RPANDA are also very similar. The same is true for small values of λ
and µ) in ClaDS1, and for small values of λ and ε in ClaDS2. For larger values, RPANDA apparently overestimates the likelihood
for both models, and there are also some apparent discretization effects at very high values of λ. We tried to examine the effects
of these inaccuracies in RPANDA on the posterior estimates of the ClaDS1 and ClaDS2 model parameters for the test tree, but
were unable to get sufficiently good MCMC convergence in RPANDA to allow meaningful analysis of these results.

24

0.2 0.4 0.6 0.8 1.0

-1
55

-1
50

-1
45

-1
40

WebPPL ClaDS0 vs BIRCH ClaDS0

λ
o

lo
g

Z^

B5

-
-

WebPPL
BIRCH

0.2 0.4 0.6 0.8 1.0

-1
55

-1
50

-1
45

-1
40

WebPPL ClaDS1 vs BIRCH ClaDS1

λ
o

lo
g

Z^

B6

-
-

WebPPL
BIRCH

0.2 0.4 0.6 0.8 1.0

-1
55

-1
50

-1
45

-1
40

WebPPL ClaDS2 vs BIRCH ClaDS2

λ
o

lo
g

Z^

B7

-
-

WebPPL
BIRCH

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

WebPPL LSBDS vs Birch LSBDS

Expected number of rate changes

lo
g

Z^
C2

-
-

WebPPL
RevBayes

-0.10 -0.05 0.00 0.05 0.10

-1
55

-1
50

-1
45

-1
40

WebPPL BAMM vs Birch BAMM.

z

lo
g

Z^

E4

-
-

WebPPL
BIRCH

Fig. 7 Verification that the WebPPL and Birch scripts for lineage-specific diversification models generate normalization constants that match each
other for select parameter values.

25

0.0 0.2 0.4 0.6 0.8 1.0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

WebPPL ClaDS0 vs RPANDA ClaDS0

λf

lo
g

 Ẑ

B8

α = 1, σ = 0.05 (R ClaDS0)

0.0 0.2 0.4 0.6 0.8 1.0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

WebPPL ClaDS1 vs RPANDA ClaDS1

λf

lo
g

 Ẑ

B14. α = 1 σ = 0.05

μ = 0 λf (RPANDA)

μ = 0 . 1 λf (RPANDA)

μ = 0 . 5 λf (RPANDA)

μ = 0 . 9 λf (RPANDA)

0.0 0.2 0.4 0.6 0.8 1.0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

WebPPL ClaDS2 vs RPANDA ClaDS2

λf

lo
g

 Ẑ

B12. α = 1 σ = 0.05

ε = 0 (RPANDA)

ε = 0 . 1 (RPANDA)

ε = 0 . 5 (RPANDA)

ε = 0 . 9 (RPANDA)

Fig. 8 Verification of the likelihoods computed by WebPPL in programs emulating RPANDA against likelihoods computed by RPANDA for the
ClaDS models.

26

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

WebPPL LSBDS vs RevBayes LSBDS

Expected number of rate changes

lo
g

 Z^

C4

-
-

WebPPL
RevBayes

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

Birch LSBDS vs RevBayes LSBDS

Expected number of rate changes

lo
g

 Z^

C3

-
-

Birch
RevBayes

Fig. 9 Verification that the WebPPL and Birch scripts for the LSBDS model generate normalization constant estimates that match the numerically
estimated likelihood computed by RevBayes.

7.5 Verification of LSBDS against RevBayes
In the current implementation of LSBDS in RevBayes (the SCM algorithm), the likelihoods are computed by discretizing the λ
and µ priors. Transitions happen by “jumping” from one pair of discrete values of λ and µ to a different pair. We discovered that
λ and µ are coupled when these jumps are made: i.e., the discrete vectors representing the prior distributions fλ and fµ have to be
of the same length and, when a jump happens, a single new array index is chosen for both the λ and the µ vector. Thus, usually,
the RevBayes LSBDS examplesh fix λ but discretize µ (or vice-versa). However, it is possible to discretize both λ and µ and then
expand the two arrays so that all possible combinations of λ and µ values appear when sweeping both vectors simultaneously
with a single array index. This has to be done manually.

We verified our LSBDS scripts against RevBayes for specific values of η and integrated out λ ∼ Exponential(1) and µ = ελ,
where ε ∼ Uniform(0, 1) using k = 10 rate categories for both λ and µ. We implemented the appropriate vector of parameter
values manually, as described above. The RevBayes scripts used in the verification experiments are provided in the git repository
accompanying the paper.

Under these settings, both the WebPPL and Birch scripts for the LSBDS model generate normalization constant estimates that
match the likelihoods computed by RevBayes (Supplementary Note Figure 9). As observed previously in several experiments,
Birch provides slightly more precise estimates of the normalization constant than WebPPL.

7.6 Verification of BAMM against LSBDS
There is no third-party software implementing BAMM that we can verify the WebPPL and Birch scripts against. However, we
can use the fact that BAMM collapses to LSBDS when all zi values approach 0. Under these conditions, and when integrating
out the other model parameters, both the WebPPL and Birch simulations scripts for BAMM produce the same normalization
constants as the corresponding LSBDS scripts (Supplementary Note Figure 10),

8 Empirical data

For the empirical analyses illustrating PPL inference for phylogenetic diversification models, we used the bird trees analyzed
previously for the ClaDS2 model by Maliet et al. 30 . The trees originate from an earlier study inferring a global timed phylogeny
of birds44. Specifically, clades with 50 or more leaves (excluding outgroups) from the earlier study were selected in the ClaDS2
study30 and post-processed to remove outgroups and to rescale branch lengths to time units (myr). Also, only species for
which there is molecular data have been included in the trees analyzed by Maliet et al. 30 ; consequently the authors calculated a
sampling fraction (ρ) by dividing the number of tips in the trees computed for species with genetic data by number of tips in the
corresponding complete tree (private correspondence).

hhttps://github.com/hoehna/birth-death-shift-analyses

27

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

WebPPL BAMM (z = 0) vs WebPPL LSBDS

Expected number of rate shifts

lo
g

Z

C5

-
-

WebPPL BAMM
WebPPL LSBDS

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

Birch BAMM (z = 0) vs Birch LSBDS

Expected number of rate shifts

lo
g

Z

C6

-
-

Birch BAMM
Birch LSBDS

Fig. 10 Verification that the WebPPL and Birch scripts for the BAMM model generate normalization constant estimates that match those of the
corresponding scripts for the LSBDS model for some points in parameter space where the BAMM model collapses to LSBDS.

We downloaded these post-processed trees from the repositoryi accompanying the ClaDS2 paper and extracted the corre-
sponding sampling fractions ρ.

The trees were converted from binary R data (RData) to text format (Nexus) with the ape package. The Nexus files were then
converted to PhyJSON with the nexus2phyjson tool that we provide18. Next, the PhyJSON trees were reoriented to avoid any
systematic left-right imbalances in the original trees that could have a negative effect on inference (see Section 6.4). The resulting
PhyJSON trees were then used as input data for the WebPPL and Birch analyses.

There are 42 bird clades in the Jetz et al. 44 study with more than 50 species excluding outgroups. However, we discovered that
two of the trees, P2 and Scolopaci, have negative branch lengths. Rather than introducing arbitrary corrections for the negative
branch lengths, we excluded these trees from further analysis. The remaining 40 bird trees are summarized in Table 6. The
original names of the bird clades44 are rather cryptic. Here, we named the clades after the family (or other higher taxon) to which
most members belong according to the taxonomic classification used in the original bird study44. If a family is split between
two clades, the clades are numbered 1 and 2. A ’-’ sign after the family name indicates that some members of the family are
not included in the clade; a ’+’ sign indicates that the clade includes some members of other families. Four of the trees in the
repository accompanying the ClaDS paper30 are mislabeled there: Caprimulgidae is incorrectly labeled CC7, CC4 is labeled
Cathartidae, CC7 is labeled CC5CC6B, and CC8 is labeled CC5CC6C.

The size of the trees vary from 54 (Alcedinidae) to 316 leaves (Tyrannidae+), and the ages from 12.5 Ma (Thraupidae1+) to
66.6 Ma (Cuculidae). The fraction of species included in the trees, that is, the sampling fraction ρ, varies from 0.43 (Columbidae)
to 0.91 (Hirundinidae). The tree shapes are depicted in Supplementary Note Figures 11, 12.

9 Efficiency of inference algorithms

In this section, we provide detailed information about the efficiency of the inference algorithms, taking into account both the quality
of the samples of the posterior distribution, and the computational resources needed in obtaining those samples. Specifically,
we take advantage of the most obvious approach to measuring the quality of a Monte Carlo inference procedure: we repeat the
analysis many times (by running the corresponding program multiple times), and then assess the consistency of the estimates.

We focus on the normalization constant estimates across independent Monte Carlo analyses, as the normalization constant is
influenced by all components in the model, including priors, latent variables and data. Thus, the consistency of the normalization
constant estimates should provide a good overall estimate of the efficiency of the inference procedure.

Clearly, the more computational resources we invest in obtaining an estimate of the normalization constant, the better that
estimate will be. When is the estimate good enough? This depends on how the estimate is to be used. Consider, for example,
if the estimate is to be used within a pseudomarginal Metropolis-Hastings sampler. In this case, there is a trade-off between the
quality of the normalization constant estimate and the overall efficiency of the MCMC procedure. The efficiency of the MCMC
procedure (per time unit) will increase with the precision of the normalization constant estimate, but will decrease with the time
required to obtain it. Given some reasonable assumptions, it turns out that the optimal choice is to target a standard deviation of

ihttps://github.com/OdileMaliet/ClaDS/tree/master/birds_MCC_results

28

Table 6 Overview of the bird trees used for diversification analyses.

Tree Clade (Jetz et al.) Leaves ρ Age (Ma) Notes

Accipitridae Accipitridae 175 0.71 59.6 Hawks, eagles, kites and allies
Alcedinidae Alcedinidae 54 0.57 34.9 Kingfishers
Anatinae Anatinae 108 0.87 20.3 Dabbling ducks
Caprimulgidae Caprimulgidae 57 0.61 57.3 Nightjars
Campephagidae- CC4 70 0.85 30.1 Cuckooshrikes and allies
Charadrii Charadrii 63 0.62 59.6 Waders
Columbidae Columbidae 133 0.43 35.9 Pigeons and doves
Corvidae+ CC8 234 0.66 30.0 Crows, magpies, monarchs and allies
Cuculidae Cuculidae 126 0.88 66.6 Cuckoos
Emberizidae- P20b 125 0.77 14.8 Buntings
Estrildidae P7 101 0.62 19.5 Estrildid finches
Fringillidae+ P10 123 0.63 25.4 True finches
Furnaridae Furnaridae 205 0.67 19.9 Ovenbirds
Hirundinidae S6 77 0.91 23.1 Swallows, martins and allies
Icteridae P21 92 0.88 14.0 New World blackbirds, orioles and allies
Lari Lari 127 0.84 24.6 Gulls
Malaconotidae+ CC7 80 0.55 31.4 Bushshrikes
Meliphagidae-+ BC7 90 0.49 37.1 Honeyeaters
Muscicapidae-+ M6 231 0.77 20.2 Old World flycatchers
Paridae+ S2 55 0.72 40.9 Tits
Parulidae+ P20a 111 0.89 17.2 New World warblers
Phasianidae Phasianidae 131 0.73 27.2 Pheasants, partridges and allies
Picidae Picidae 137 0.61 27.1 Woodpeckers
Procellariidae Procellariidae 105 0.81 59.6 Shearwaters, fulmarine petrels and allies
Psittacidae1 Psittacidae1 111 0.65 33.2 True parrots (part)
Psittacidae2 Psittacidae2 118 0.72 34.9 True parrots (part)
Pycnonotidae-+ S9 95 0.73 29.4 Bulbuls
Ramphastidae Ramphastidae 81 0.65 32.2 Toucans
Strigidae Strigidae 101 0.52 45.7 True owls
Sturnidae+ M4 130 0.87 24.9 Starlings, mockingbirds and allies
Syvliidae1+ S11 79 0.65 28.1 Warblers, parrotbills and allies (part)
Sylviidae2+ S7S8 93 0.79 24.3 Warblers, parrotbills and allies (part)
Thamnophilidae Thamnophilidae 165 0.74 22.4 Antbirds
Thraupidae1+ P13P14P16 158 0.71 12.5 Tanagers (part)
Thraupidae2+ P17P18 139 0.89 13.7 Tanagers (part)
Timaliidae-+ S13 180 0.49 21.0 Old World babblers
Trochilidae Trochilidae 233 0.69 28.1 Hummingbirds
Troglodytidae+ M1 91 0.69 32.7 Wrens
Turdidae-+ M5 134 0.86 21.7 Thrushes
Tyrannidae+ Tittyranrest 316 0.69 33.6 Tyrant flycatchers

29

A Accipitridae B Alcedinidae C Anatinae D Caprimulgidae

E Campephagidae- F Charadrii G Columbidae H Corvidae+

I Cuculidae J Emberizidae- K Estrildidae L Fringillidae+

M Furnaridae N Hirundinidae O Icteridae P Lari

Q Malaconotidae+ R Meliphagidae-+ S Muscicapidae-+ T Paridae+

Fig. 11 Shape of the bird trees, part 1

30

A Parulidae+ B Phasianidae C Picidae D Procellariidae

E Psittacidae1 F Psittacidae2 G Pycnonotidae-+ H Ramphastidae

I Strigidae J Sturnidae+ K Syvliidae1+ L Sylviidae2+

M Thamnophilidae N Thraupidae1+ O Thraupidae2+ P Timaliidae-+

Q Trochilidae R Troglodytidae+ S Turdidae-+ T Tyrannidae+

Fig. 12 Shape of the bird trees, part 2

31

1.0 if the Metropolis-Hastings algorithm using the exact likelihood is efficient, and around 1.7 when it is not45. This suggests
that a normalization constant estimate with a standard deviation close to 1.0 is more than satisfactory for this kind of demanding
application.

With this in mind, we use two additional diagnostics to assess the efficiency of our inference procedure: the relative effective
sample size (RESS) and the conditional acceptance rate (CAR). The former assesses the effect of using the normalizing constant
estimates as the weights for an importance sampler, the latter of using them as unbiased estimates of the marginal likelihood for
a pseudomarginal sampler.

Specifically, if we have N particles with normalized weights {w1,w2, . . . ,wN }, the effective sample size Neff is computed as

Neff =
(∑i wi)2∑

i w
2
i

. (14)

This is known as Kish’s ESS46. We then compute the relative ESS (RESS) simply by dividing the ESS with the number of
independent Monte Carlo estimates we had of the normalization constant. The RESS, which is a value on the interval (0, 1],
measures the efficiency of the Monte Carlo estimation procedure40.

Like RESS, CAR is a value on the interval (0, 1]47. It measures the expected drop in acceptance rate of a Metropolis-Hastings
proposal due to errors in the estimate of the normalization constant, that is, similar to the logic we described above in establishing
a quality criterion for the standard deviation. This theoretical acceptance rate is measured for each sampled point, as though the
proposal distribution were shrunk to a Dirac δ distribution. The CAR is related to the standard deviation of the normalization
constant estimate, but, like RESS, is a more direct measure of the impacts of that estimate on an inference procedure.

In the initial analyses, we used 10,000 particles in the importance sampling procedure (for the CRB(D) and TDB(D) models)
and 5,000 particles in the SMC procedure with the alive particle filter (for the remaining models). The standard deviation of the
normalization constant was well below 1.0 in all sequential importance sampling runs (Table 7). In the SMC runs, the standard
deviation was usually close to or below 1.0 for all models except BAMM. However, we noted standard deviations above 2.0 in
2 of 40 trees for ClaDS1 (Muscicapidae-+ and Thamnophilidae) and in 5 of 40 trees for LSBDS (Accipitridae, Muscicapidae-+,
Timaliidae-+, Tyrannidae+ and Trochilidae). For BAMM, we increased the number of particles to 20,000, which brought the
standard deviations down to more acceptable levels, even if we still noted values above 2.0 for 17 of 40 trees.

The RESS and CAR values largely reflect the standard deviation of the normalization constant estimates. However, we
observed some SMC cases where the RESS and CAR values suggest that the sample is reasonably good, even though the standard
deviation is high. Notable examples include the BAMM results for Corvidae+, Columbidae and Cuculidae, and the LSBDS
results for Muscicapidae-+ and Trochilidae.

All analyses of empirical data were run on Tetralith, the largest high-performance computing cluster at the National Super-
computer Centre (NSC), Sweden, a part of the Swedish National Infrastructure for Computing (SNIC). The cluster comprises
1908 nodes, each with two Intel Xeon Gold 6130 CPUs (each with 16 cores). There are 1832 nodes with 96 GiB and 60 nodes
with 384 GiB of RAM.j The operating system on the nodes is Linux (version 3.10.0) and the cluster uses SLURM (18.08.8) to
schedule jobs. For each tree and model, we submitted an array of 10 single-core jobs with the memory limit set to 8 GiB (to avoid
running out of memory for the largest trees), each running the respective Birch program 50 times. We used the latest development
version of Birchk and its standard library (as of June 12, 2020).

The median time (among 500 replicates) required to complete an importance sampling analysis (10,000 particles) using this
hardware and analysis setup ranged from a few seconds to around one minute (Table 8). The SMC analyses (5,000 or 20,000
particles) were more demanding, requiring from around a minute to more than 50 minutes in extreme cases. The longest run
times were usually associated with the BAMM model, for which we used four times as many particles (20,000) as for the other
models. For models other than BAMM, the median run times rarely exceeded ten minutes. As one might expect, the largest trees
were generally associated with the longest run times.

10 Extended results

The main purpose of the empirical analyses is to demonstrate the power of probabilistic programming in addressing inference
problems in phylogenetics, not to advance the field of diversification studies. Nevertheless, there are several interesting patterns
in the results that deserve attention and that may inspire further study. In this section, we present model likelihoods and posterior
estimates of model parameters for all bird clades and diversification models (Supplementary Note Figures 13–22). The plots of
posterior distributions should be interpreted in relation to the prior distributions for the corresponding regions of parameter space
(Supplementary Note Figures 23). We structure the discussion of the results around several cross-cutting themes.

10.1 Conservative nature of Bayesian model tests
One of the most striking patterns across the bird trees, especially given the recent debate about the importance of accommodating
lineage-specific diversification rates, is that simple birth-death models do so well in a Bayesian model comparison. In at least 16 of
the 40 bird trees, there is no strong evidence against the simple CRB and CRBDmodels. In fact, in most of these cases, the simple

jhttps://www.nsc.liu.se/systems/tetralith/
khttps://github.com/lawmurray/Birch

32

Table 7 Diagnostics for the normalization constant estimates obtained across 500 runs for each tree and model. The first line in each cell shows
the mean and standard deviation of the normalization constant estimates. We also give the relative effective sample size (RESS, the second line)
and conditional acceptance ratio (CAR, the third line).

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Accipitridae
−1219.1 ± 0.1 −1218.9 ± 0.1 −1220.6 ± 0.2 −1220.1 ± 0.1 −1196.7 ± 0.7 −1196.9 ± 1.1 −1196.7 ± 1.0 −1214.1 ± 3.6 −1212.3 ± 3.0

RESS: 0.995 RESS: 0.994 RESS: 0.970 RESS: 0.987 RESS: 0.656 RESS: 0.042 RESS: 0.442 RESS: 0.034 RESS: 0.055
CAR: 0.962 CAR: 0.956 CAR: 0.901 CAR: 0.935 CAR: 0.630 CAR: 0.331 CAR: 0.500 CAR: 0.092 CAR: 0.119

Alcedinidae
−304.4 ± 0.0 −305.5 ± 0.1 −305.6 ± 0.1 −306.0 ± 0.1 −306.9 ± 0.2 −308.9 ± 0.7 −307.7 ± 0.6 −307.5 ± 0.4 −308.6 ± 0.6

RESS: 0.998 RESS: 0.997 RESS: 0.995 RESS: 0.996 RESS: 0.940 RESS: 0.112 RESS: 0.521 RESS: 0.857 RESS: 0.831
CAR: 0.974 CAR: 0.967 CAR: 0.960 CAR: 0.965 CAR: 0.861 CAR: 0.564 CAR: 0.666 CAR: 0.781 CAR: 0.784

Anatinae
−587.8 ± 0.0 −586.2 ± 0.0 −587.8 ± 0.1 −586.7 ± 0.0 −576.1 ± 0.7 −576.6 ± 1.0 −575.9 ± 0.9 −581.0 ± 1.2 −579.8 ± 1.2

RESS: 0.999 RESS: 0.998 RESS: 0.995 RESS: 0.998 RESS: 0.547 RESS: 0.041 RESS: 0.376 RESS: 0.236 RESS: 0.053
CAR: 0.979 CAR: 0.977 CAR: 0.962 CAR: 0.972 CAR: 0.599 CAR: 0.365 CAR: 0.511 CAR: 0.393 CAR: 0.292

Caprimulgidae
−347.8 ± 0.1 −349.1 ± 0.1 −349.4 ± 0.1 −350.1 ± 0.1 −348.1 ± 0.5 −348.7 ± 0.7 −348.5 ± 0.6 −351.5 ± 1.7 −352.3 ± 3.2

RESS: 0.997 RESS: 0.994 RESS: 0.990 RESS: 0.992 RESS: 0.775 RESS: 0.475 RESS: 0.617 RESS: 0.084 RESS: 0.004
CAR: 0.970 CAR: 0.955 CAR: 0.942 CAR: 0.949 CAR: 0.735 CAR: 0.580 CAR: 0.638 CAR: 0.399 CAR: 0.030

Campephagidae-
−395.7 ± 0.0 −397.0 ± 0.1 −396.4 ± 0.1 −396.9 ± 0.1 −397.0 ± 0.2 −398.7 ± 0.5 −397.9 ± 0.4 −399.0 ± 0.3 −399.7 ± 0.3

RESS: 0.998 RESS: 0.996 RESS: 0.997 RESS: 0.997 RESS: 0.944 RESS: 0.219 RESS: 0.869 RESS: 0.903 RESS: 0.888
CAR: 0.975 CAR: 0.962 CAR: 0.967 CAR: 0.968 CAR: 0.863 CAR: 0.667 CAR: 0.794 CAR: 0.821 CAR: 0.815

Charadrii
−400.3 ± 0.1 −399.9 ± 0.1 −401.9 ± 0.1 −400.2 ± 0.1 −404.3 ± 0.3 −404.5 ± 0.7 −402.4 ± 0.7 −402.2 ± 0.4 −403.9 ± 0.9

RESS: 0.996 RESS: 0.996 RESS: 0.983 RESS: 0.995 RESS: 0.895 RESS: 0.601 RESS: 0.541 RESS: 0.833 RESS: 0.353
CAR: 0.966 CAR: 0.966 CAR: 0.925 CAR: 0.961 CAR: 0.812 CAR: 0.632 CAR: 0.615 CAR: 0.770 CAR: 0.532

Columbidae
−889.0 ± 0.1 −890.7 ± 0.1 −889.4 ± 0.1 −888.9 ± 0.1 −887.4 ± 0.7 −890.4 ± 1.7 −888.4 ± 1.2 −894.1 ± 0.9 −894.0 ± 4.1

RESS: 0.997 RESS: 0.987 RESS: 0.989 RESS: 0.992 RESS: 0.606 RESS: 0.186 RESS: 0.412 RESS: 0.589 RESS: 0.185
CAR: 0.969 CAR: 0.936 CAR: 0.940 CAR: 0.951 CAR: 0.603 CAR: 0.307 CAR: 0.459 CAR: 0.581 CAR: 0.389

Corvidae+
−1594.3 ± 0.1 −1596.8 ± 0.1 −1595.1 ± 0.1 −1596.5 ± 0.1 −1586.0 ± 0.8 −1589.0 ± 1.9 −1587.9 ± 1.3 −1600.0 ± 1.0 −1600.7 ± 3.2

RESS: 0.996 RESS: 0.981 RESS: 0.989 RESS: 0.980 RESS: 0.499 RESS: 0.148 RESS: 0.386 RESS: 0.468 RESS: 0.276
CAR: 0.966 CAR: 0.922 CAR: 0.939 CAR: 0.919 CAR: 0.550 CAR: 0.340 CAR: 0.431 CAR: 0.507 CAR: 0.408

Cuculidae
−881.5 ± 0.1 −883.2 ± 0.1 −883.1 ± 0.2 −883.2 ± 0.1 −882.1 ± 0.4 −884.0 ± 0.6 −882.7 ± 0.5 −886.1 ± 0.6 −889.0 ± 2.8

RESS: 0.994 RESS: 0.982 RESS: 0.976 RESS: 0.987 RESS: 0.855 RESS: 0.698 RESS: 0.794 RESS: 0.705 RESS: 0.129
CAR: 0.957 CAR: 0.923 CAR: 0.912 CAR: 0.937 CAR: 0.776 CAR: 0.676 CAR: 0.729 CAR: 0.671 CAR: 0.277

Emberizidae-
−737.9 ± 0.0 −740.7 ± 0.1 −725.7 ± 0.2 −727.5 ± 0.4 −731.2 ± 0.4 −735.4 ± 1.2 −732.7 ± 0.5 −744.2 ± 1.2 −733.7 ± 2.3

RESS: 0.998 RESS: 0.985 RESS: 0.969 RESS: 0.870 RESS: 0.831 RESS: 0.508 RESS: 0.715 RESS: 0.428 RESS: 0.080
CAR: 0.974 CAR: 0.930 CAR: 0.899 CAR: 0.783 CAR: 0.756 CAR: 0.556 CAR: 0.700 CAR: 0.472 CAR: 0.172

Estrildidae
−567.4 ± 0.0 −569.0 ± 0.1 −567.6 ± 0.1 −568.4 ± 0.1 −569.5 ± 0.7 −571.2 ± 1.1 −570.0 ± 1.1 −570.9 ± 1.0 −569.3 ± 1.5

RESS: 0.998 RESS: 0.995 RESS: 0.998 RESS: 0.996 RESS: 0.639 RESS: 0.384 RESS: 0.394 RESS: 0.320 RESS: 0.064
CAR: 0.977 CAR: 0.961 CAR: 0.972 CAR: 0.966 CAR: 0.629 CAR: 0.452 CAR: 0.464 CAR: 0.471 CAR: 0.199

Fringillidae+
−727.7 ± 0.0 −728.8 ± 0.1 −728.8 ± 0.1 −729.6 ± 0.1 −718.2 ± 0.6 −720.3 ± 0.6 −719.3 ± 0.7 −726.4 ± 0.9 −726.3 ± 0.9

RESS: 0.998 RESS: 0.996 RESS: 0.995 RESS: 0.994 RESS: 0.706 RESS: 0.674 RESS: 0.659 RESS: 0.439 RESS: 0.377
CAR: 0.974 CAR: 0.962 CAR: 0.960 CAR: 0.958 CAR: 0.697 CAR: 0.657 CAR: 0.639 CAR: 0.533 CAR: 0.495

Furnaridae
−1262.7 ± 0.0 −1265.0 ± 0.1 −1263.0 ± 0.1 −1264.7 ± 0.1 −1253.5 ± 0.8 −1256.0 ± 1.0 −1255.1 ± 0.9 −1264.1 ± 1.0 −1262.8 ± 0.9

RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.988 RESS: 0.537 RESS: 0.456 RESS: 0.494 RESS: 0.426 RESS: 0.487
CAR: 0.974 CAR: 0.941 CAR: 0.965 CAR: 0.938 CAR: 0.594 CAR: 0.520 CAR: 0.547 CAR: 0.509 CAR: 0.527

Hirundinidae
−433.1 ± 0.0 −434.9 ± 0.1 −432.1 ± 0.1 −433.0 ± 0.1 −433.5 ± 0.3 −435.6 ± 0.6 −434.2 ± 0.5 −437.1 ± 0.5 −436.1 ± 0.8

RESS: 0.998 RESS: 0.993 RESS: 0.997 RESS: 0.995 RESS: 0.909 RESS: 0.740 RESS: 0.735 RESS: 0.798 RESS: 0.078
CAR: 0.974 CAR: 0.952 CAR: 0.970 CAR: 0.961 CAR: 0.826 CAR: 0.684 CAR: 0.701 CAR: 0.732 CAR: 0.454

Icteridae
−495.6 ± 0.0 −497.9 ± 0.1 −492.6 ± 0.1 −494.2 ± 0.1 −494.6 ± 0.4 −497.4 ± 0.6 −495.8 ± 0.5 −500.2 ± 0.5 −497.6 ± 0.6

RESS: 0.999 RESS: 0.992 RESS: 0.995 RESS: 0.987 RESS: 0.863 RESS: 0.714 RESS: 0.808 RESS: 0.816 RESS: 0.664
CAR: 0.979 CAR: 0.948 CAR: 0.962 CAR: 0.936 CAR: 0.787 CAR: 0.683 CAR: 0.744 CAR: 0.738 CAR: 0.652

Lari
−743.9 ± 0.0 −738.2 ± 0.0 −742.2 ± 0.1 −738.4 ± 0.1 −710.9 ± 0.5 −712.2 ± 1.0 −711.9 ± 0.9 −718.7 ± 1.1 −718.6 ± 1.0

RESS: 0.998 RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.783 RESS: 0.482 RESS: 0.558 RESS: 0.502 RESS: 0.536
CAR: 0.978 CAR: 0.972 CAR: 0.942 CAR: 0.964 CAR: 0.717 CAR: 0.538 CAR: 0.570 CAR: 0.520 CAR: 0.556

Malaconotidae+
−501.2 ± 0.1 −503.3 ± 0.1 −498.0 ± 0.1 −497.8 ± 0.1 −494.9 ± 0.5 −498.2 ± 1.1 −495.7 ± 0.7 −506.4 ± 0.9 −503.6 ± 2.6

RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.994 RESS: 0.797 RESS: 0.438 RESS: 0.732 RESS: 0.458 RESS: 0.056
CAR: 0.968 CAR: 0.935 CAR: 0.959 CAR: 0.957 CAR: 0.736 CAR: 0.499 CAR: 0.685 CAR: 0.554 CAR: 0.213

Meliphagidae-+
−570.6 ± 0.1 −572.8 ± 0.1 −568.6 ± 0.1 −569.1 ± 0.1 −570.4 ± 0.5 −573.0 ± 1.1 −571.2 ± 0.9 −575.9 ± 1.0 −574.4 ± 1.5

RESS: 0.997 RESS: 0.986 RESS: 0.994 RESS: 0.993 RESS: 0.773 RESS: 0.249 RESS: 0.413 RESS: 0.530 RESS: 0.084
CAR: 0.968 CAR: 0.932 CAR: 0.955 CAR: 0.954 CAR: 0.723 CAR: 0.423 CAR: 0.535 CAR: 0.598 CAR: 0.296

Muscicapidae-+
−1576.7 ± 0.1 −1580.3 ± 0.3 −1541.9 ± 0.2 −1543.4 ± 0.6 −1548.3 ± 0.9 −1553.9 ± 2.4 −1549.7 ± 1.4 −1586.3 ± 2.9 −1557.3 ± 8.1

RESS: 0.996 RESS: 0.942 RESS: 0.944 RESS: 0.823 RESS: 0.390 RESS: 0.051 RESS: 0.267 RESS: 0.147 RESS: 0.016
CAR: 0.964 CAR: 0.860 CAR: 0.864 CAR: 0.736 CAR: 0.501 CAR: 0.178 CAR: 0.370 CAR: 0.209 CAR: 0.043

Paridae+
−327.2 ± 0.0 −328.8 ± 0.1 −327.8 ± 0.1 −327.8 ± 0.1 −319.1 ± 0.6 −321.5 ± 0.8 −320.0 ± 0.7 −331.0 ± 1.0 −327.0 ± 3.2

RESS: 0.998 RESS: 0.993 RESS: 0.994 RESS: 0.996 RESS: 0.536 RESS: 0.534 RESS: 0.626 RESS: 0.437 RESS: 0.038
CAR: 0.972 CAR: 0.953 CAR: 0.956 CAR: 0.964 CAR: 0.649 CAR: 0.579 CAR: 0.637 CAR: 0.608 CAR: 0.102

33

Table 7: (continued)

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Parulidae+
−620.5 ± 0.0 −622.7 ± 0.1 −619.7 ± 0.1 −621.3 ± 0.1 −600.3 ± 0.9 −603.1 ± 1.0 −601.2 ± 1.0 −622.6 ± 1.6 −615.1 ± 2.8

RESS: 0.998 RESS: 0.992 RESS: 0.997 RESS: 0.993 RESS: 0.468 RESS: 0.421 RESS: 0.320 RESS: 0.227 RESS: 0.030
CAR: 0.978 CAR: 0.950 CAR: 0.969 CAR: 0.953 CAR: 0.539 CAR: 0.498 CAR: 0.476 CAR: 0.362 CAR: 0.073

Phasianidae
−808.7 ± 0.0 −809.5 ± 0.1 −809.9 ± 0.1 −809.5 ± 0.1 −810.7 ± 0.5 −811.0 ± 0.7 −810.4 ± 0.8 −812.0 ± 0.7 −812.9 ± 1.1

RESS: 0.998 RESS: 0.996 RESS: 0.993 RESS: 0.996 RESS: 0.813 RESS: 0.558 RESS: 0.460 RESS: 0.573 RESS: 0.125
CAR: 0.972 CAR: 0.963 CAR: 0.954 CAR: 0.964 CAR: 0.746 CAR: 0.611 CAR: 0.564 CAR: 0.613 CAR: 0.400

Picidae
−830.7 ± 0.0 −832.8 ± 0.1 −831.8 ± 0.1 −833.4 ± 0.1 −828.5 ± 0.8 −830.2 ± 1.1 −830.6 ± 1.5 −835.4 ± 1.5 −835.7 ± 2.7

RESS: 0.998 RESS: 0.991 RESS: 0.995 RESS: 0.987 RESS: 0.547 RESS: 0.334 RESS: 0.190 RESS: 0.173 RESS: 0.028
CAR: 0.974 CAR: 0.945 CAR: 0.959 CAR: 0.934 CAR: 0.597 CAR: 0.444 CAR: 0.339 CAR: 0.291 CAR: 0.068

Procellariidae
−686.0 ± 0.1 −684.0 ± 0.1 −686.5 ± 0.2 −684.8 ± 0.1 −680.8 ± 0.7 −681.9 ± 0.9 −681.0 ± 0.9 −685.4 ± 1.0 −687.1 ± 1.4

RESS: 0.997 RESS: 0.996 RESS: 0.972 RESS: 0.993 RESS: 0.638 RESS: 0.444 RESS: 0.486 RESS: 0.324 RESS: 0.058
CAR: 0.967 CAR: 0.965 CAR: 0.905 CAR: 0.954 CAR: 0.628 CAR: 0.559 CAR: 0.535 CAR: 0.447 CAR: 0.299

Psittacidae1
−690.7 ± 0.1 −688.8 ± 0.1 −690.9 ± 0.1 −689.2 ± 0.1 −691.9 ± 0.6 −692.5 ± 1.0 −691.5 ± 0.9 −691.4 ± 0.7 −693.0 ± 2.0

RESS: 0.997 RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.713 RESS: 0.426 RESS: 0.339 RESS: 0.636 RESS: 0.232
CAR: 0.972 CAR: 0.969 CAR: 0.934 CAR: 0.962 CAR: 0.685 CAR: 0.511 CAR: 0.493 CAR: 0.633 CAR: 0.419

Psittacidae2
−729.5 ± 0.0 −730.3 ± 0.1 −730.7 ± 0.1 −731.3 ± 0.1 −726.6 ± 0.5 −727.8 ± 0.7 −727.3 ± 0.7 −731.5 ± 0.8 −732.3 ± 0.7

RESS: 0.998 RESS: 0.995 RESS: 0.990 RESS: 0.992 RESS: 0.772 RESS: 0.194 RESS: 0.529 RESS: 0.436 RESS: 0.595
CAR: 0.972 CAR: 0.962 CAR: 0.944 CAR: 0.950 CAR: 0.715 CAR: 0.561 CAR: 0.585 CAR: 0.540 CAR: 0.643

Pycnonotidae-+
−589.9 ± 0.1 −592.3 ± 0.1 −584.0 ± 0.1 −584.9 ± 0.1 −585.9 ± 0.5 −588.9 ± 0.9 −586.9 ± 0.7 −595.1 ± 0.6 −589.8 ± 1.9

RESS: 0.997 RESS: 0.983 RESS: 0.995 RESS: 0.991 RESS: 0.803 RESS: 0.457 RESS: 0.638 RESS: 0.772 RESS: 0.482
CAR: 0.970 CAR: 0.926 CAR: 0.958 CAR: 0.947 CAR: 0.740 CAR: 0.545 CAR: 0.626 CAR: 0.706 CAR: 0.542

Ramphastidae
−475.0 ± 0.0 −475.0 ± 0.1 −475.9 ± 0.1 −475.7 ± 0.1 −476.8 ± 0.5 −478.3 ± 0.8 −477.4 ± 0.7 −477.0 ± 0.5 −478.2 ± 0.6

RESS: 0.998 RESS: 0.998 RESS: 0.993 RESS: 0.996 RESS: 0.795 RESS: 0.480 RESS: 0.493 RESS: 0.811 RESS: 0.483
CAR: 0.974 CAR: 0.972 CAR: 0.952 CAR: 0.966 CAR: 0.736 CAR: 0.584 CAR: 0.606 CAR: 0.750 CAR: 0.633

Strigidae
−645.2 ± 0.1 −646.4 ± 0.1 −646.8 ± 0.1 −647.7 ± 0.1 −647.5 ± 0.6 −649.8 ± 1.0 −649.1 ± 0.9 −649.1 ± 0.8 −650.9 ± 1.0

RESS: 0.997 RESS: 0.993 RESS: 0.987 RESS: 0.984 RESS: 0.689 RESS: 0.501 RESS: 0.468 RESS: 0.560 RESS: 0.464
CAR: 0.968 CAR: 0.954 CAR: 0.935 CAR: 0.928 CAR: 0.677 CAR: 0.531 CAR: 0.517 CAR: 0.589 CAR: 0.558

Sturnidae+
−794.2 ± 0.1 −796.6 ± 0.1 −792.9 ± 0.1 −794.2 ± 0.1 −793.2 ± 0.6 −795.6 ± 1.0 −794.5 ± 1.0 −799.2 ± 0.7 −797.9 ± 0.9

RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.992 RESS: 0.670 RESS: 0.302 RESS: 0.408 RESS: 0.668 RESS: 0.426
CAR: 0.971 CAR: 0.935 CAR: 0.961 CAR: 0.949 CAR: 0.661 CAR: 0.481 CAR: 0.520 CAR: 0.652 CAR: 0.520

Syvliidae1+
−453.3 ± 0.0 −454.1 ± 0.1 −454.4 ± 0.1 −454.6 ± 0.1 −442.9 ± 0.5 −445.0 ± 0.7 −444.2 ± 0.7 −451.0 ± 0.7 −451.5 ± 0.9

RESS: 0.998 RESS: 0.997 RESS: 0.995 RESS: 0.996 RESS: 0.787 RESS: 0.519 RESS: 0.605 RESS: 0.571 RESS: 0.357
CAR: 0.975 CAR: 0.971 CAR: 0.962 CAR: 0.966 CAR: 0.721 CAR: 0.620 CAR: 0.616 CAR: 0.612 CAR: 0.569

Sylviidae2+
−540.6 ± 0.0 −542.1 ± 0.1 −541.3 ± 0.1 −541.7 ± 0.1 −537.4 ± 0.6 −539.4 ± 0.7 −538.4 ± 0.7 −544.2 ± 0.6 −544.2 ± 1.1

RESS: 0.998 RESS: 0.994 RESS: 0.997 RESS: 0.996 RESS: 0.698 RESS: 0.634 RESS: 0.603 RESS: 0.659 RESS: 0.195
CAR: 0.975 CAR: 0.958 CAR: 0.967 CAR: 0.966 CAR: 0.678 CAR: 0.631 CAR: 0.610 CAR: 0.664 CAR: 0.423

Thamnophilidae
−1061.2 ± 0.1 −1064.2 ± 0.2 −1049.0 ± 0.1 −1050.5 ± 0.2 −1046.9 ± 0.9 −1050.2 ± 2.3 −1048.6 ± 1.3 −1067.7 ± 1.1 −1056.6 ± 2.4

RESS: 0.997 RESS: 0.974 RESS: 0.989 RESS: 0.970 RESS: 0.513 RESS: 0.140 RESS: 0.206 RESS: 0.476 RESS: 0.002
CAR: 0.970 CAR: 0.909 CAR: 0.940 CAR: 0.901 CAR: 0.542 CAR: 0.306 CAR: 0.365 CAR: 0.511 CAR: 0.004

Thraupidae1+
−935.9 ± 0.0 −938.3 ± 0.1 −931.3 ± 0.1 −932.2 ± 0.2 −919.5 ± 1.0 −922.8 ± 1.2 −920.1 ± 1.0 −935.9 ± 0.8 −926.0 ± 1.1

RESS: 0.998 RESS: 0.989 RESS: 0.993 RESS: 0.977 RESS: 0.309 RESS: 0.180 RESS: 0.406 RESS: 0.559 RESS: 0.264
CAR: 0.976 CAR: 0.940 CAR: 0.951 CAR: 0.913 CAR: 0.476 CAR: 0.391 CAR: 0.484 CAR: 0.594 CAR: 0.423

Thraupidae2+
−807.6 ± 0.0 −810.1 ± 0.1 −801.6 ± 0.1 −803.1 ± 0.2 −791.0 ± 0.6 −794.1 ± 1.0 −791.7 ± 0.7 −807.6 ± 1.8 −798.7 ± 1.6

RESS: 0.998 RESS: 0.988 RESS: 0.990 RESS: 0.970 RESS: 0.730 RESS: 0.471 RESS: 0.558 RESS: 0.311 RESS: 0.109
CAR: 0.976 CAR: 0.938 CAR: 0.944 CAR: 0.901 CAR: 0.682 CAR: 0.528 CAR: 0.595 CAR: 0.522 CAR: 0.239

Timaliidae-+
−1120.2 ± 0.0 −1121.0 ± 0.1 −1121.4 ± 0.1 −1121.4 ± 0.1 −1082.9 ± 1.5 −1084.8 ± 1.6 −1084.3 ± 1.8 −1096.5 ± 2.2 −1095.5 ± 3.2

RESS: 0.998 RESS: 0.996 RESS: 0.995 RESS: 0.995 RESS: 0.205 RESS: 0.161 RESS: 0.076 RESS: 0.131 RESS: 0.013
CAR: 0.974 CAR: 0.963 CAR: 0.960 CAR: 0.958 CAR: 0.332 CAR: 0.295 CAR: 0.206 CAR: 0.207 CAR: 0.030

Trochilidae
−1567.5 ± 0.1 −1569.7 ± 0.1 −1567.9 ± 0.1 −1569.0 ± 0.1 −1562.8 ± 0.9 −1565.4 ± 1.3 −1563.9 ± 1.2 −1573.0 ± 3.8 −1573.0 ± 3.7

RESS: 0.997 RESS: 0.983 RESS: 0.992 RESS: 0.986 RESS: 0.483 RESS: 0.363 RESS: 0.366 RESS: 0.273 RESS: 0.097
CAR: 0.968 CAR: 0.926 CAR: 0.948 CAR: 0.933 CAR: 0.534 CAR: 0.435 CAR: 0.439 CAR: 0.378 CAR: 0.190

Troglodytidae+
−545.7 ± 0.0 −547.8 ± 0.1 −546.0 ± 0.1 −547.4 ± 0.1 −547.8 ± 0.4 −550.5 ± 0.7 −549.3 ± 0.6 −550.3 ± 0.6 −550.7 ± 1.0

RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.991 RESS: 0.846 RESS: 0.643 RESS: 0.742 RESS: 0.736 RESS: 0.346
CAR: 0.973 CAR: 0.941 CAR: 0.963 CAR: 0.948 CAR: 0.773 CAR: 0.621 CAR: 0.693 CAR: 0.681 CAR: 0.515

Turdidae-+
−830.1 ± 0.1 −833.0 ± 0.2 −821.3 ± 0.1 −822.7 ± 0.2 −813.0 ± 0.9 −817.4 ± 1.5 −814.4 ± 1.0 −836.0 ± 0.8 −826.4 ± 2.2

RESS: 0.997 RESS: 0.975 RESS: 0.992 RESS: 0.978 RESS: 0.508 RESS: 0.299 RESS: 0.461 RESS: 0.578 RESS: 0.014
CAR: 0.970 CAR: 0.910 CAR: 0.949 CAR: 0.915 CAR: 0.550 CAR: 0.373 CAR: 0.498 CAR: 0.594 CAR: 0.043

Tyrannidae+
−2273.6 ± 0.1 −2276.0 ± 0.2 −2274.1 ± 0.1 −2275.1 ± 0.2 −2262.0 ± 1.0 −2262.7 ± 1.6 −2260.9 ± 1.3 −2278.2 ± 8.8 −2281.7 ± 11.4

RESS: 0.995 RESS: 0.971 RESS: 0.985 RESS: 0.978 RESS: 0.334 RESS: 0.176 RESS: 0.275 RESS: 0.096 RESS: 0.004
CAR: 0.961 CAR: 0.902 CAR: 0.931 CAR: 0.915 CAR: 0.489 CAR: 0.300 CAR: 0.387 CAR: 0.171 CAR: 0.006

34

Table 8 Median execution time in Birch in seconds for each tree and model. See text for details.

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Accipitridae 14 27 30 35 400 460 606 860 2097
Alcedinidae 4 8 8 11 77 95 214 154 792
Anatinae 8 17 19 22 222 236 631 226 1719
Caprimulgidae 4 9 10 11 96 115 209 289 958
Campephagidae- 5 11 12 14 107 120 221 124 966
Charadrii 5 11 11 13 109 134 571 328 890
Columbidae 10 20 23 27 258 295 475 310 1918
Corvidae+ 18 36 41 47 570 636 820 415 2852
Cuculidae 10 19 22 25 241 271 380 441 1730
Emberizidae- 10 19 23 25 234 260 450 222 1669
Estrildidae 8 16 17 20 179 213 613 200 1344
Fringillidae+ 10 18 21 25 212 233 287 209 1329
Furnaridae 15 30 35 41 463 520 625 243 1941
Hirundinidae 6 12 13 15 111 129 277 180 942
Icteridae 7 15 17 20 152 178 334 159 1077
Lari 9 19 22 25 228 238 477 295 1295
Malaconotidae+ 6 12 14 16 131 155 512 813 1091
Meliphagidae-+ 7 14 16 18 150 173 326 257 1140
Muscicapidae-+ 18 36 40 47 576 640 909 414 2941
Paridae+ 4 8 9 11 84 98 216 429 677
Parulidae+ 8 18 20 24 210 234 366 257 1527
Phasianidae 10 21 25 26 245 267 412 230 1348
Picidae 10 21 24 28 269 279 456 295 1611
Procellariidae 8 16 18 20 193 231 386 267 1351
Psittacidae1 8 17 19 22 205 219 477 316 1237
Psittacidae2 9 18 21 22 216 237 360 220 1425
Pycnonotidae-+ 7 14 17 19 144 169 243 182 1261
Ramphastidae 6 13 15 15 122 138 299 233 851
Strigidae 8 15 18 20 170 204 392 232 1198
Sturnidae+ 9 19 21 27 247 251 352 237 1538
Syvliidae1+ 6 10 14 16 114 141 276 279 864
Sylviidae2+ 7 14 16 17 152 158 315 287 883
Thamnophilidae 12 24 28 33 327 418 524 415 1802
Thraupidae1+ 12 27 27 34 314 363 428 224 1673
Thraupidae2+ 11 23 24 30 327 323 723 277 1753
Timaliidae-+ 14 27 31 32 366 411 481 262 1864
Trochilidae 18 33 41 47 578 657 821 432 2699
Troglodytidae+ 7 13 16 18 149 171 289 182 1193
Turdidae-+ 10 21 23 27 251 284 426 223 1447
Tyrannidae+ 23 48 55 63 963 1022 2073 2064 3250

35

Accipitridae Alcedinidae Anatinae Caprimulgidae

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 13 Normalization constants and parameter estimates for Accipitridae, Alcedinidae, Anatinae, Caprimulgidae.

36

Campephagidae- Charadrii Columbidae Corvidae+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 14 Normalization constants and parameter estimates for Campephagidae-, Charadrii, Columbidae, Corvidae+.

37

Cuculidae Emberizidae- Estrildidae Fringillidae+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 15 Normalization constants and parameter estimates for Cuculidae, Emberizidae-, Estrildidae, Fringillidae+.

38

Furnaridae Hirundinidae Icteridae Lari

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 16 Normalization constants and parameter estimates for Furnaridae, Hirundinidae, Icteridae, Lari.

39

Malaconotidae+ Meliphagidae-+ Muscicapidae-+ Paridae+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 17 Normalization constants and parameter estimates for Malaconotidae+, Meliphagidae-+, Muscicapidae-+, Paridae+.

40

Parulidae+ Phasianidae Picidae Procellariidae

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 18 Normalization constants and parameter estimates for Parulidae+, Phasianidae, Picidae, Procellariidae.

41

Psittacidae1 Psittacidae2 Pycnonotidae-+ Ramphastidae

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 19 Normalization constants and parameter estimates for Psittacidae1, Psittacidae2, Pycnonotidae-+, Ramphastidae.

42

Strigidae Sturnidae+ Syvliidae1+ Sylviidae2+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 20 Normalization constants and parameter estimates for Strigidae, Sturnidae+, Syvliidae1+, Sylviidae2+.

43

Thamnophilidae Thraupidae1+ Thraupidae2+ Timaliidae-+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 21 Normalization constants and parameter estimates for Thamnophilidae, Thraupidae1+, Thraupidae2+, Timaliidae-+.

44

Trochilidae Troglodytidae+ Turdidae-+ Tyrannidae+

lo
g
Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 22 Normalization constants and parameter estimates for Trochilidae, Troglodytidae+, Turdidae-+, Tyrannidae+.

45

0.0 0.1 0.2 0.3 0.4 0.5

A λ

−0.2 −0.1 0.0 0.1 0.2

B z

−1.0 −0.5 0.0 0.5 1.0

C logα

0.0 0.2 0.4 0.6 0.8 1.0

D σ2

0.00 0.01 0.02 0.03 0.04 0.05

E η

Fig. 23 Prior distributions plotted for the same region of parameter space used for the posterior distributions in Supplementary Note Figures 13–22.

models (either CRB(D) or TDB(D)) have the best normalizing constants. There are also some cases where the TDB(D) models
do clearly better than the other models, significantly so in a couple of cases (Emberizidae- and Muscicapidae-+, Supplementary
Note Figures 15 and 17, respectively).

There is a clear correlation between the size of the tree and the outcome of the model comparison. Of the trees with less
than 100 leaves, the CRB(D) models adequately describe the diversification process in a majority of cases, as indicated by
Bayes factors. The largest trees lacking strong evidence of lineage-specific or slowing diversification have around 130 leaves
(Columbidae, Cuculidae, Phasianidae and Sturnidae+; Supplementary Note Figures 14, 15, 18 and 20, respectively). Above that
size, all trees bear a clear mark of lineage-specific or, at least, slowing (TDB(D)) diversification. The age of the tree appears
to be positively related to the adequacy of simple diversification models. Of the ten youngest trees, only two (Estrildidae+ and
Icteridae; Supplementary Note Figures 15 and 16, respectively) lack strong support for lineage-specific or slowing diversification,
while this is fairly common among the oldest trees.

These patterns appear to be best explained by the density of branching events in the reconstructed tree. The more branching
events there are per unit time, the more likely it is that the evolutionary process has left signs of density-dependent or lineage-
specific diversification. These fluctuations in diversification rates may tend to even out over longer time scales, as old and
species-poor trees are often adequately explained by simple models. However, there are clear exceptions. For instance, the
Paridae+ (Supplementary Note Figure 17) shows clear evidence of lineage-specific diversification, despite being an old group
(40.9 Ma) with relatively few species (55).

Overall, our results clearly illustrate that Bayes factors are inherently conservative, preferring simpler models unless the signal
in the data is sufficiently strong to decisively reject them. While this could be considered a reasonable feature, some caution is
nevertheless needed when interpreting the outcome of the model comparison experiment. In particular, the fact that very simple
models seem adequate for so many of the bird clades appears to largely reflect the lack of (sufficiently strong) evidence and should
not be interpreted as evidence of absence. Many of the trees analysed here (and elsewhere) are too small or not informative
enough to allow for a non-trivial outcome.

The degree to which Bayes factors are conservative is dependent on the prior distributions used for the additional parameters
of the more complex models. More diffuse priors automatically result in higher penalties in the model comparison—and this even
if the posterior distribution itself is not impacted or only marginally impacted. Often, this is not a major problem, for instance
when comparing models of sequence evolution, where the signal contributed by the sequence data easily overwhelms the penalty
induced by diffuse priors. Here, in contrast, the empirical signal contributed by phylogenetic trees of surviving lineages about
the underlying diversification process is somewhat weaker, making the relative impact of the prior on the outcome of Bayesian
model tests more substantial.

Whether our priors strike a reasonable balance between simple and complex models is, of course, open to discussion. We
note, however, that our priors for the ClaDS models are less conservative than the ones proposed originally for these models30.
Thus, our priors penalize the ClaDS models less than would otherwise have been the case. We also want to re-emphasize that, to
allow fair model comparisons, we chose priors on analogous model parameters that were similar, if not identical, across models.

An alternative to Bayesian model comparison is to focus on model adequacy, that is, the extent to which the models are
consistent with the data. A popular approach to assess model adequacy is to use posterior predictive checks, but this requires the
specification of an appropriate discrepancy measure48. A general criterion of model adequacy that avoids this difficulty is the
recently introduced data consistency criterion49. However, we refrain from pursuing this topic further here.

46

10.2 Robustness of complex models
An important result that emerges from our analyses, and that we want to emphasize, is the robustness of complex diversification
models. Even when Bayes factors indicate that simple models are adequate, the more sophisticated models often give consistent
estimates for the additional model parameters. Good examples are provided by the posterior estimates for σ2, describing the rate
of gradual, lineage-specific change in diversification rates in the ClaDS models, and η, denoting the rate of punctuated change
in the LSBDS and BAMM models; both of these parameters are usually estimated to be close to 0 when simple models appear
adequate. Similarly, the parameters related to potential density-dependent effects (z for TDB(D) and BAMM, and logα for
ClaDS) are often close to 0 when the CRB(D) models have the best marginal likelihoods. Furthermore, no-extinction models ,
such as ClaDS0, often have higher marginal likelihoods than their counterparts that accommodate extinction. However, in these
cases, the more complex models almost always estimate extinction or turnover rates that are close to 0. This usually occurs with
very little impact on the estimation of other parameters, as is well illustrated by the very similar posterior distributions obtained
across the ClaDS model series, despite the fact that ClaDS0 often has (slightly) better marginal likelihood than the more complex
variants.

If the results are scrutinized, one discovers that the advanced diversification models actually appear to pick up weak but
consistent signal for more complex patterns even when they are not favored by the model tests. For instance, when posterior
estimates of logα or z are significantly different from 0 in these cases, the estimates always suggest slowing diversification rates,
and the models that accommodate such variation over time tend to be the ones with the best model likelihoods, even if they are
only marginally better than the constant-rate models. Taken together, these observations suggest that the more complex models
might in fact be generally more adequate than the simpler ones. The risk of obtaining erroneous or misleading inference under
more complex models appears to be low, at least in comparisons among nested models with similar dimensionality.

10.3 Slowing diversification rates
The strongest signal across bird clades in our analyses is undoubtedly the support for slowing diversification rates. This is seen
already in the model comparisons but perhaps more clearly in the posterior estimates of logα in the ClaDS models, and z in
the TDB(D) and BAMM models (Supplementary Note Figures 13–22). The estimates are almost universally below 0, indicating
decelerating rates, and usually significantly so (more than 95% of the credible interval on negative values). Nowhere is the
signal more evident than in the four bird clades where the models that only account for changing diversification rates over
time—the TDB(D) models—come out distinctly ahead of all others in the model comparison (Emberizidae-, Meliphagidae-+,
Muscicapidae-+ and Pycnonotidae-+). In two of those cases (Emberizidae- and Muscicapidae-+; Supplementary Note Figures 15
and 17, respectively), the Bayes factors even provide strong evidence in favor of TDB(D) over all other models.

Diversification rates that slow down over time are usually attributed to competition for limited resources or niches50,51,52.
Alternative explanations that have been proposed include: (1) subdivision of geographic ranges at speciation; (2) speciation bursts
driven by environmental or geological change; (3) failure to keep pace with environmental change; and (4) protracted speciation
(related to the diversified sampling bias, see below)53. It might be possible to tease apart some of these factors by developing
more sophisticated diversification models within the PPL framework, but this is outside the scope of the current paper. Regardless
of the causes, it is clear that there is a strong signature of slowing diversification rates in the bird clades, and that it is important
to account for this in diversification models.

10.4 Gradual change, punctuated change or both?
Unsurprisingly, there is also clear evidence of variation across lineages in diversification rates. Of the 40 bird trees, Bayes factors
strongly favor models accommodating lineage-specific effects over simpler ones in 15 cases. Even in the remaining cases, there is
often some support for lineage-specific variation in diversification rates, as indicated by posterior estimates of model parameters.

The ClaDS models consistently explain this variation in diversification rates better than the LSBDS and BAMM models. In
fact, there are only three groups for which the LSBDS and BAMM models are strongly favored over the corresponding simple
models: Anatinae, Lari, and Timaliidae-+ (Supplementary Note Figures 13, 16 and 21, respectively), The BAMM model also
does comparatively well on the Thraupidae1+ tree (Supplementary Note Figure 21). As expected, these trees are also associated
with posterior estimates of η that differ substantially from 0. However, even for these trees, where BAMM and LSBDS detect
major shifts in diversification rates, the ClaDS models provide a better fit to the data.

We may conclude that lineage-specific differences in diversification rates are better explained by slow, gradual changes, which
accumulate over time, than by a few events that drastically alter the rates. One possible explanation for this is that the punctuated
models (BAMM and LSBDS) draw the new λ and µ (and z for BAMM) values from diffuse priors at process switching events.
This means that they carry heavy penalties in Bayes factor comparisons; the more switches there are, the heavier the penalty
against these models. An interesting difference between the punctuated models and the gradual models is that the former allow
both λ and µ to vary over the tree, while only λ is modulated over the tree in the latter. Could this be the explanation for the
gradual models outperforming the punctuated models? We tested this by modifying LSBDS and BAMM such that they assumed
a constant turnover rate (ε = µ/λ), as in ClaDS2, and only varied λ (and z for BAMM) at switching points. We then re-computed
the normalization constants for Lari, one of the clades with the strongest evidence for major shifts in diversification rates. The
normalization constants of the punctuated models did not improve noticeably due to this modification (results not shown). This

47

finding suggests that the strong evidence in favor of gradual over punctuated change is not due simply to the punctuated models
postulating changes in extinction rates that are not supported by the data.

A fascinating question is whether there remains any evidence for occasional major shifts in diversification rates if one first
adequately accounts for the strong underlying signal of slow and gradual change. This can now be examined by extending the PPL
framework we present here to diversification models that combine ClaDS-like and BAMM-like features. Given the general lack
of support for radical shifts in diversification rates across the bird trees, it seems likely that such shifts are rare, if they occur at
all. Therefore, identifying them would presumably require analyses of larger trees than the ones examined here. However, it also
seems likely that the two processes interact, such that it becomes more difficult to detect major shifts when the gradual changes
are not accounted for. Thus, it is possible that there are major shifts in the bird trees that our analyses failed to detect because of
shortcomings in the models. We will have to await future analyses using more sophisticated models before we know whether this
is the case.

10.5 Discretizing punctuated-change models
Computing likelihoods for punctuated models of diversification by integrating out the rate priors using discrete approximations
is potentially a very powerful approach29. It allows for robust and computationally efficient MCMC inference, as long as a small
number of rate categories yield sufficiently accurate likelihood estimates. This decidedly appears to be the case, especially if only
changes in speciation rate are modeled; empirical analyses suggest that ten categories is quite sufficient for most problems29.

Unfortunately, it is difficult to see how this approach can be extended to accommodate slowing (or increasing) diversification
rates over times as in BAMM, because then it would be necessary to integrate out an infinite number of rate acceleration or
deceleration processes with different starting points. This appears to be an important limitation from an empirical perspective,
at least judging by the bird trees we analyzed. The LSBDS model does not fit many of the reconstructed trees well; this is
undoubtedly linked to the substantial support for slowing diversification rates in most bird clades. If we restrict our attention to
models of punctuated change, we find 8 trees with strong evidence favoring the BAMM model over the LSBDS model. There is
not a single tree for which the evidence goes strongly in the other direction.

10.6 Sampling biases
Some of the results that emerge from our analyses are probably due, at least in part, to sampling biases. The lack of evidence
for extinction rates above zero is an obvious case. Models without extinction (CRB, TDB, ClaDS0) almost always do better than
models with extinction (Supplementary Note Figures 13–22). The most notable exception is the Lari (gulls), where the CRBD
and TDBD models significantly outperform their non-extinction counterparts (Supplementary Note Figure 16). A similar but
much weaker signal is seen in a few other groups: the Anatinae (Supplementary Note Figure 13), Charadrii (Supplementary Note
Figure 14), Procellariidae (Supplementary Note Figure 18) and Psittacidae1 (Supplementary Note Figure 19). The outcome of
the model comparison is generally consistent with posterior estimates of µ under the models that do accommodate extinction
(CRBD and TDBD). That is, estimated extinction rates are usually low except for Lari, and to a lesser extent for the other groups
that weakly favor models that accommodate extinction. Interestingly, Lari is also unusual in that there is evidence for accelerating
speciation rates (z > 0). However, this occurs only in the TDB model, and is probably an artefact of not accounting for extinction,
as extinction rates noticeably above zero are expected to lead to an apparent acceleration of speciation rates close to the present
in reconstructed trees25.

The lack of support for extinction in our analyses is consistent with results from previous diversification studies52. Given the
overwhelming evidence for frequent extinction in the fossil record, these results are not plausible. Clearly, current phylogenetic
diversification analyses tend to underestimate extinction rates. An important factor that may contribute toward such underesti-
mation of extinction rates is the diversified sampling bias54. This is the tendency of biologists to systematically select leaves
of phylogenetic trees in such a way that the diversity represented in the sampled tree is maximized, instead of choosing leaves
randomly as assumed by standard birth-death models. The diversified sampling bias will lead to pruning of the most recent splits
from the complete reconstructed tree. The more incomplete the sampling is, the deeper the period that is devoid of splits will
extend into the past. In the most extreme cases, the sampled tree will look like a bush: most of the splits will be close to the
root of the tree, and all the leaves will sit on long terminal branches. If one analyzes a tree sampled to maximize diversity under
a model assuming random sampling, extinction rates can be substantially underestimated54. Failing to account for diversified
sampling bias can also result in severe biases in divergence time estimates55,56.

The bird trees we examined here represent fairly complete samples of extant species (from about half of the species and
up), with no obvious biases (Table 6). Nevertheless, it is easy to show that they are characterized to some extent by diversified
sampling. In total, the bird data include 9,993 species, 6,670 of which were sampled for sequencing44. Only the latter were
included in the trees we examined here. If the sequenced species were chosen randomly, then they would include approximately
the same number of genera as any random sample of 6,670 species. However, the sequenced species cover as many as 1,880
genera, while 10,000 random samples of 6,670 species included only 1,759 genera on average (range 1,703 to 1,808). Thus,
the sequenced set has significantly fewer species per genus than expected by chance, the type of bias we would predict from
diversified sampling.

A similar bias that may also affect our results is that incipient species, sibling species and subspecies are likely to be
underrepresented in the data. Some of those lineages will eventually develop into true species, and should be included in

48

estimates of speciation and extinction rates at the species level. Unacknowledged diversified sampling around or just above the
species level is linked to the phenomenon of protracted speciation57.

Interestingly, diversified sampling bias that is not accounted for correctly could also contribute to the strong support for
slowing diversification rates, even though there are also plausible biological explanations for such patterns53. To understand why
diversified sampling may give the impression of slowing diversification, consider that the extinction rate estimates are largely
based on the apparent acceleration of speciation towards the recent seen in surviving trees because there has not been time enough
for extinction of the side lineages that will eventually disappear25. Diversified sampling would systematically remove the evidence
for this apparent acceleration in speciation rates.

As one might expect, there is also a link between the posterior estimates of extinction and the evidence for slowing diversi-
fication rates. Specifically, models that accommodate slowing diversification rates (TDBD, ClaDS models and BAMM) are also
associated with distinctly higher estimates of initial extinction rates than models that do not (LSBDS, CRBD) (Supplementary
Note Figures 13–22). How this link might be affected by diversified sampling biases is currently unclear. Pursuing this topic
further would be outside of the scope of the current paper. However, we do note that it is relatively straightforward to modify our
script to account for diversified sampling according to the model suggested by Höhna et al. 54 , or potentially even more realistic
models.

Some recent papers have suggested that unrealistically low extinction rate estimates may be the result of applying models
that do not account for the heterogeneity across lineages in diversification rates that characterize most phylogenetic trees58,31.
If this were true, then one would expect extinction rate estimates in our analyses to be higher for models that accommodate
lineage-specific variation than for comparable models that do not. However, this is not the case. For instance, extinction rate
estimates are similar or lower for LSBDS than for the comparable CRBD model (Supplementary Note Figures 13–22). Similarly,
the estimates are similar or lower for ClaDS1 than for CRBD. The initial extinction rate estimates of the ClaDS2 and BAMM
models are best compared to the analogous estimates for the TDBDmodel, which does not accommodate variation across lineages
in diversification rates. These estimates are similar for most bird trees (less clear for BAMM than for ClaDS2), further supporting
the conclusion that unaccommodated heterogeneity in diversification rates is not responsible for the low extinction rate estimates.
Of course, we cannot exclude the possibility that even more sophisticated models than the ones examined here could show that
extinction rates are underestimated because of shortcomings in the modeling of across-lineage variation in diversification rates.

10.7 Statistical power
Reconstructed trees carry only a limited amount of information about absolute speciation and extinction rates. This is illustrated
well by the underestimation of extinction rates discussed above. For really powerful analyses of diversification processes, we need
trees that include data from the fossil record, that is, observations of both extinct and extant lineages59. In most cases, however,
observation of extinct lineages is not possible, or the information about extinct lineages is bound to be very incomplete, so we
need to extract as much information as possible from trees that only (or mainly) comprise surviving lineages. There are several
ways in which analyses of such trees can be improved. Addressing sampling biases appropriately would be an important step in
the right direction. Making the model of the diversification process itself more realistic, for instance by combining gradual and
punctuated change as suggested above, would be another. However, the most obvious way to improve the analyses would be to
increase the amount of data.

A natural way of extending the present work in this direction would be to opt for a hierarchical model-averaging approach,
in which all trees in a set, such as the bird clades, would be analyzed simultaneously. Specifically, each tree would randomly
choose from a mixture of all available models, while the mixture proportions and the hyper-parameters tuning the priors over
model-specific parameters would themselves be estimated across trees, using a hierarchical modeling design. Global estimation
of hyper-priors and mixture weights based on the whole collection of trees is an efficient way to fit the priors to the true prevalence
of alternative modes of diversification and the true variation in parameter values present in the data and therefore should result in
well-calibrated model selection. Joint analysis of all trees would also make it possible to collect the weak signals disseminated
across the many small trees of the analysis. Such developments are exactly what the probabilistic programming framework
introduced here is meant to facilitate.

A completely different approach would be to analyze larger portions of the tree of life. For instance, our analyses of 40 bird
clades could have been replaced with a single analysis of the entire bird tree, doubling the coverage of bird species (from 5,000 to
10,000). Such an analysis would not only include more of the variation seen across terminal clades, it would also add data on the
deeper splits in the tree. These splits could potentially inform the model about long-term macroevolutionary patterns that could
not be detected in analyses of only terminal clades, regardless of how sophisticated. For instance, it has been suggested that the
bird radiation as a whole is characterized by rare but major boosts in diversification rates, presumably linked to key innovations
opening up new ecological niches44. If these upward jumps in diversification rates are substantial enough, it could explain why
there is overwhelming support for slowing diversification rates in individual bird clades, even though the rates appear to be
accelerating over the bird tree as a whole44. Such a mega-analysis would have to be based on a model that is more sophisticated
than the ones explored here. Minimally, it would have to account for both gradual and punctuated change in diversification
rates. Ideally, it would also account for variation across lineages in the strength of the slowing forces on diversification, and in
the rate of gradual change in speciation and extinction rates. Again, such developments are well supported by the probabilistic
programming framework, although it is still an open question whether current inference strategies are efficient enough or whether
further refinement is needed.

49

References

1. Gilks, W. R., Thomas, A. & Spiegelhalter, D. J. A language and program for complex Bayesian modelling. The Statistician
43, 169–177 (1994).

2. Bishop, C. M. Pattern Recognition and Machine Learning (2006, New York, USA, Springer).

3. Minka, T. et al. Infer.NET 0.3 (2018). Microsoft Research Cambridge. http://dotnet.github.io/infer.

4. Goodman, N. D. The principles and practice of probabilistic programming. ACM SIGPLAN Notices 48, 399–402 (2013).

5. Gordon, A. D., Henzinger, T. A., Nori, A. V. & Rajamani, S. K. Probabilistic programming. In Proceedings of the on Future
of Software Engineering, pages 167–181 (ACM, 2014).

6. Murray, L. M., Lundén, D., Kudlicka, J., Broman, D. & Schön, T. B. Delayed sampling and automatic Rao–Blackwellization
of probabilistic programs. In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics,
volume 21, page 10 (Lanzarote, 2018).

7. Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K. & Tenenbaum, J. B. Church: A language for generative
models. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, page 220–229 (AUAI
Press, Arlington, Virginia, USA, 2008).

8. Pfeffer, A. Figaro: An object-oriented probabilistic programming language. Charles River Analytics Technical Report 137,
96 (2009).

9. Goodman, N. D. & Stuhlmüller, A. The design and implementation of probabilistic programming languages. http:
//dippl.org (2014). Accessed: 2020-5-12.

10. Wood, F., Meent, J. W. & Mansinghka, V. A new approach to probabilistic programming inference. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, pages 1024–1032 (Reykjavik, Iceland, 2014).

11. Mansinghka, V., Selsam, D. & Perov, Y. Venture: a higher-order probabilistic programming platform with programmable
inference. Preprint at https://arxiv.org/abs/1404.0099 (2014).

12. Tran, D. et al. Edward: A library for probabilistic modeling, inference, and criticism. Preprint at https://arxiv.org/
abs/1610.09787 (2016).

13. Bingham, E. et al. Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research 20, 1–6 (2019).

14. Murray, L. M. & Schön, T. B. Automated learning with a probabilistic programming language: Birch. Annual Reviews in
Control 46, 29–43 (2018).

15. Carpenter, B. et al. Stan: A probabilistic programming language. Journal of Statistical Software 76 (2017).

16. Broman, D. A Vision of Miking: Interactive programmatic modeling, sound language composition, and self-learning
compilation. In Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering (SLE),
pages 55–60 (ACM, 2019).

17. van de Meent, J.-W., Paige, B., Yang, H. & Wood, F. An introduction to probabilistic programming. Preprint at https:
//arxiv.org/abs/1809.10756 (2018).

18. PhyJSON—a simple JSON format for phylogenetic data. https://github.com/kudlicka/nexus2phyjson/blob/
master/doc/phyjson_format_description.md (2018). Accessed: 2020-04-17.

19. BiSSE trees from MesquiteCore. https://github.com/MesquiteProject/MesquiteCore/blob/master/
Resources/examples/Diversification/06-BiSSEtrees.nex (2009). Accessed: 2020-04-16.

20. Whale tree from BAMM. https://github.com/macroevolution/bamm/blob/master/examples/
diversification/whales/whaletree.tre (2013). Accessed: 2020-04-16.

21. Diversitree raw content fromGitHub. https://raw.githubusercontent.com/richfitz/diversitree/master/pub/
example/data/primates-10.nex (2011). Accessed: 2020-04-16.

22. Gernhard, T. The conditioned reconstructed process. Journal of Theoretical Biology 253, 769–778 (2008).

23. Semple, C. & Steel, M. Phylogenetics (Oxford University Press, Oxford, 2003).

24. Yule, G. U. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philosophical Transactions
of the Royal Society of London. Series B, Containing Papers of a Biological Character 213, 21–87 (1924).

50

25. Nee, S. Birth-death models in macroevolution. Annual Review of Ecology, Evolution and Systematics 37, 1–17 (2006).

26. Feller, W. Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behand-
lung. Acta Biotheoretica 5, 11–40 (1939).

27. Kendall, D. G. On the generalized "birth-and-death" process. The Annals of Mathematical Statistics 19, 1–15 (1948).

28. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS
ONE 9, e89543 (2014).

29. Höhna, S. et al. A Bayesian approach for estimating branch-specific speciation and extinction rates. Preprint at https:
//biorxiv.org/content/10.1101/555805v1 (2019).

30. Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates.
Nature Ecology & Evolution 3, 1086–1092 (2019).

31. Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proceedings of the
National Academy of Sciences of the United States of America 108, 16327–16332 (2011).

32. Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of
Bayesian analysis of macroevolutionary mixtures. Proceedings of the National Academy of Sciences of the United States of
America 113, 9569–9574 (2016).

33. Laudanno, G., Haegeman, B., Rabosky, D. L. & Etienne, R. S. Detecting lineage-specific shifts in diversification: A proper
likelihood approach. Systematic Biology 69, 000–000 (2020).

34. Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Systematic
Biology 56, 701–710 (2007).

35. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate
methods. Journal of Molecular evolution 39, 306–314 (1994).

36. Barido-Sottani, J., Vaughan, T. G. & Stadler, T. A multitype birth–death model for Bayesian inference of lineage-specific
birth and death rates. Systematic Biology 69, 973–986 (2020).

37. Maliet, O. & Morlon, H. Fast and accurate estimation of species-specific diversification rates using data augmentation.
Preprint at https://www.biorxiv.org/content/10.1101/2020.11.03.365155v1 (2020).

38. Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods
in Ecology and Evolution 5, 701–707 (2014).

39. Lundén, D., Broman, D., Ronquist, F. & Murray, L. M. Automatic alignment of Sequential Monte Carlo inference in
higher-order probabilistic programs. Preprint at https://arxiv.org/abs/1812.07439 (2018).

40. Kudlicka, J., Murray, L. M., Ronquist, F. & Schön, T. B. Probabilistic programming for birth-death models of evolution
using an alive particle filter with delayed sampling. In Proceedings of the Conference on Uncertainty in Artificial Intelligence
2019, volume 2019, page 11 (Tel Aviv, Israel, 2019).

41. Wigren, A., Risuleo, R. S., Murray, L. & Lindsten, F. Parameter elimination in particle Gibbs sampling. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox & R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8918–8929 (Curran Associates, Inc., 2019).

42. Del Moral, P., Jasra, A., Lee, A., Yau, C. & Zhang, X. The alive particle filter and its use in particle Markov chain Monte
Carlo. Stochastic Analysis and Applications 33, 943–974 (2015).

43. Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods in Ecology and
Evolution 7, 589–597 (2016).

44. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature
491, 444–448 (2012).

45. Doucet, A., Pitt, M. K., Deligiannidis, G. & Kohn, R. Efficient implementation of Markov chain Monte Carlo when using an
unbiased likelihood estimator. Biometrika 102, 295–313 (2015).

46. Kish, L. Survey Sampling (John Wiley & Sons, Inc., New York, NY, USA; London, UK, 2014).

47. Murray, L. M., Jones, E. M. & Parslow, J. On disturbance state-space models and the particle marginal Metropolis-Hastings
sampler. SIAM/ASA Journal on Uncertainty Quantification 1, 494–521 (2013). Publisher: Society for Industrial and Applied
Mathematics.

51

48. Gelman, A. et al. Bayesian Data Analysis (CRC Press, Boca Raton, FL, USA, 2014), 3rd edition.

49. Lindholm, A., Zachariah, D., Stoica, P. & Schön, T. B. Data consistency approach to model validation. In IEEE Access,
volume 7, pages 59788–59796 (2019).

50. McPeek, M. The ecological dynamics of clade diversification and community assembly. The American Naturalist 172,
E270–E284 (2008).

51. Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 60,
842–855 (2006).

52. Pyron, R. A. &Burbrink, F. T. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary
hypotheses. Trends in Ecology & Evolution 28, 729–736 (2013).

53. Moen, D. & Morlon, H. Why does diversification slow down? Trends in Ecology & Evolution 29, 190–197 (2014).

54. Höhna, S., Stadler, T., Ronquist, F. & Britton, T. Inferring speciation and extinction rates under different sampling schemes.
Molecular Biology and Evolution 28, 2577–2589 (2011).

55. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth-death
process. Systematic Biology 65, 228–249 (2016).

56. Ronquist, F., Lartillot, N.&Phillips,M. J. Closing the gap between rocks and clocks using total-evidence dating. Philosophical
Transactions of the Royal Society of London B: Biological Sciences 371, 20150136 (2016).

57. Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity.
Ecology Letters 13, 716–727 (2010).

58. Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

59. Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology &
Evolution 25, 434–441 (2010).

52

